
Continuous Kernel Integration is growing up

From Jenkins under your 
desk to resilient service

Iñaki Malerba Michael Hofmann



Introduction

Continuous Kernel Integration: problem statement

2

Avoiding grumpy kernel developers

CI for the Linux Kernel:

▸ For each commit under test, run a build+test pipeline to completion

▸ Ideally that means:

･ detecting a commit

･ triggering a pipeline

･ reporting results

▸ How hard can it be...



3

https://www.pexels.com/photo/road-man-people-vehicle-6270198/

Once upon a time



4

Introduction

Simpler times: just running pipelines
"You can never go wrong by using Jenkins"

▸ Jenkins environment split into staging/production

▸ a lot of Python + Groovy

▸ an OpenShift project and a lot of clicking

… doesn't scale that well 😕



5

Introduction

Continuous Kernel Integration: problem statement, revised

Kernel developers

▸ Onboard new kernel trees
▸ Run compile and testing pipelines for Linux 

kernels from Brew, Koji, git repos, GitLab 
MRs, Patchwork, …

▸ RPM package gating
▸ Provide infrastructure for kernel workflow

Test Maintainers

▸ Onboard new kernel test (frameworks)

▸ Configuration of targeted testing

▸ Visualization and statistics for test failures

Prevent bugs from being merged into kernel trees by providing CI as a service



6

https://www.pexels.com/photo/timelapse-cityscape-photography-during-night-time-599982/

Where we want to be...



7

Introduction

Buzzword bingo
Turns out this is slightly more complicated

Serverless Microservices Containers

Processes Agile DevOps

Cross-architecture Cloud Chatbot

Deploy before merge Kubernetes Default to Open

Open Source SaaS Site Reliability Engineering Continuous Delivery



8

https://www.pexels.com/photo/grey-kitten-on-silver-paper-bag-141496/

Name or Service not known



9

Part 1: Keeping it running (SRE)



Keeping it running

General idea: reliable service on unreliable infrastructure

10

Murphy and It's Always DNS

▸ Lemma 1: Any component/dependency that can fail will fail

･ … some will fail more than others

▸ Lemma 2: nearly all failures can be retried successfully

･ … but we also have to detect the other ones

▸ So failures need to be…

･ Prevented: fewer/simpler components/dependencies

･ Detected: logging, monitoring, alerting

･ Recovered: retries at all levels, fallbacks



Keeping it running

Some background: CKI service structure

11

Everything is better in layers

▸ Essential infrastructure outside the control of CKI

･ OpenShift, Beaker, AWS, gitlab.com, ...

▸ Communication fabric

･ AMQP cluster hosting work queues, webhook receiver, ...

▸ Internal microservices

･ Trigger pipelines, run them to completion, send email reports, ...

▸ Pipeline components

･ Gitlab-runner, test database, beaker provisioner, ...



12

Keeping it running: Prevention



Keeping it running: prevention

Minimize the essentials

13

Less critical pieces means less critical failures

▸ Essential components

･ Needed for the service to run (SPOFs)

▸ Necessary components

･ Have to work at least sometimes

▸ Optional components

･ Only provide observability and increase reliability



Keeping it running: prevention

Minimization example 1: Message Queues

14

Loose coupling for code

▸ Message queues instead of REST APIs

▸ Reliable and distributed

▸ Increase service portability

▸ Automatically reprocessed failed messages after some time

▸ Examples at CKI:

･ AWS-based RabbitMQ cluster with automatic retry queues

･ Reliable webhooks: webhook-bridge

･ Retries for UMB/fedmsg processing: amqp-bridge

- https://cki-project.org/docs/hacking/operations/messaging/



Keeping it running: prevention

Minimization example 2: S3 buckets

15

Loose coupling for data

▸ S3 buckets instead of NFS, git hosting, etc

▸ Ubiquitous, fast and highly reliable: AWS, OCS, MinIO, ...

▸ Can be used as poor man's database

▸ Increase service portability

▸ Examples at CKI:

･ Ccache

･ Caching git repositories as tarballs

･ Pipeline artifacts

･ Static files and configurations



Keeping it running: prevention

Minimization example 3: Container images

16

Commoditize all the things

▸ Serverless > containers > disposable VMs > pet VMs

▸ Infrastructure becomes somebody else's problem

▸ Everything wrapped up into container images to freeze time

▸ Examples at CKI:

･ AWS Lambda to host webhook bridge

･ Gitlab-runner to spawn jobs in docker, K8s, disposable VMs

･ OpenShift/K8s as workload API



Keeping it running: Detection

17



Keeping it running: detection

Detection

18

keeping track of many, many pieces

▸ Build and testing pipelines, micro services, cron jobs, FaaS

▸ AWS, OpenStack, K8s clusters, …

▸ Logging, metrics, monitoring, alerting



Keeping it running: detection

Logging: Loki

19

at least not > /dev/null

▸ Standardized Python logger names and levels

･ Easier to read and configure

▸ Putting all the logs on a common place

･ Shared volume within one K8s project

･ Human friendly, easily grepable

▸ Grafana Loki stack for processing

･ ‘Like Prometheus, but for logs!’

･ Indexed and easy retention policies



Keeping it running: detection

Metrics: Prometheus

20

everything deserves a /metrics endpoint

▸ Expose internal status of services

･ Monitor what a service is doing and how long it’s taking

▸ Prometheus as an import-and-forget solution

･ Python’s prometheus-client

･ Built in on many services

▸ K8s autodiscover and lay back

▸ Visualize via Grafana

https://github.com/prometheus/client_python




Keeping it running: detection

Monitoring: Monit

22

Just assume no one monitors their services

▸ Keep track of 3rd party resources that we depend on

▸ Monit as a simple solution for monitoring

･ Hosts uptime

･ NFS file systems uptime and size

･ Beaker hosts queues

･ S3 bucket sizes

･ RabbitMQ messages and queues

▸ Store instant statuses and record downtimes

https://mmonit.com/monit/




Keeping it running: detection

Monitoring: Sentry

24

How to be the first one to know when everything blows up

▸ Track errors in real time

▸ Allows to fix the long tail of unlikely errors

▸ sentry.engineering.redhat.com, sentry.io

https://sentry.engineering.redhat.com/
https://sentry.io


Keeping it running: detection

Alerting

25

Where is my unsubscribe button

▸ Source: Monit, Sentry, Grafana

･ figuring out how to use Alertmanager is still on the TODO list

▸ Notify via dedicated mailing list

▸ Create real-time awareness via IRC

･ also notify about running pipelines, deployments, ...



26

Keeping it running: Recovery



Keeping it running: recovery

Retries examples 1

27

What goes around comes around

▸ Retry every network access multiple times

･ looping helper for shell code

･ common Python code to setup a retrying requests session



Keeping it running: recovery

Retries examples 2

28

▸ Rescheduling messages with RabbitMQ

･ Endlessly circulate messages until successfully handled 

･ Automatically reject messages on exception

･ Use DLX/TTL to requeue messages after some time at the end

Nothing as motivating to fix a bug as a full message queue



Keeping it running: recovery

Retries examples 3

29

“Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.” - Samuel Beckett

▸ Pipeline Herder:

･ Keeps track of failed GitLab jobs

･ Detects common transient errors

･ Retries jobs with increasing interval of time



Keeping it running: recovery

Fallbacks

30

When retries are not enough

▸ Gitlab Runner's containerized jobs can run anywhere

▸ Runners set up on OSP, Beaker, different OCP clusters, AWS

▸ Fallbacks for multi-arch runners are hard to come by



31

Part 2: Making it hackable (DevOps)



Making it hackable

Dimensions of hackability

32

I just made those up

▸ Openness
･ Public repos, documentation

･ MR workflow

▸ Safety

･ Continuous Integration: linting and testing

･ Understandable microservices

▸ Easy deployment

･ Local/Testing/Staging/Canary/Production deployments



33

Making it hackable: Openness



Open code

Making it hackable: Openness

34

From pillar to post

▸ Nearly everything public: https://gitlab.com/cki-project ~30 projects

･ Microservices, pipeline components, container images, …

▸ Internal: https://gitlab.cee.redhat.com/cki-project

･ Put another firewall in front of secret stuff

･ Credentials, internal docs, RHEL configuration, legacy projects

･ Deployment configuration including secrets

▸ WIP:

･ split deployment into public YAML and private policy + secrets

https://gitlab.com/cki-project
https://gitlab.cee.redhat.com/cki-project


Making it hackable: Openness

Open documentation

35

“A little inaccuracy saves tons of explanations” - H. H. Munro

▸ Public: https://cki-project.org/docs/hacking/

･ Plus individual README.md files per repo

▸ Inventory: https://cki-project.org/docs/hacking/inventory/

･ Components, dependencies, monitoring (WIP)

▸ Internal: https://documentation.internal.cki-project.org/

▸ Documentation Friday

▸ WIP:

･ Integration of different pieces, internal -> public

https://cki-project.org/docs/hacking/
https://cki-project.org/docs/hacking/inventory/
https://documentation.internal.cki-project.org/


36



37



Open daily operations

Making it hackable: Openness

38

Graphical strings also known as emojis

▸ Public issue tracker: gitlab.com, moved from internal Jira

▸ Internal #kernelci IRC channel: people and bots

･ Everybody and their emojis invited to join

･ Discussions, deployments, alerting, pipelines ...

▸ MR-based workflow

▸ RFC process: https://cki-project.org/docs/hacking/rfcs/

･ Asking for feedback

https://cki-project.org/docs/hacking/rfcs/


39



40

Making it hackable: Safety



Making it hackable: Safety

Continuous integration

41

Who to blame for line length limits

▸ As much linting and testing as possible

･ Shell, Shell-in-YAML

･ Python: pylint, isort, flake8, pydocstyle, pytest, coverage 

･ Documentation: markdown, URLs, review environments

▸ One linting script to rule [all Python repositories] based on tox

･ Simple to run locally, in podman container, in CI

▸ WIP:

･ Convincing the team that using a formatter is a good thing

･ For libraries, testing all dependent projects



42

Making it hackable: Safety

Understandable microservices
head <-> code size relation

▸ Code changes need to be predictable!

･ Simple mental models have to be good enough

･ If everybody is too scared to touch it, split it up

▸ Loose coupling means better interfaces

▸ Prioritize cleanups and fixes

･ Ignore management if they tell you otherwise



43

Making it hackable: Easy deployments



In general: continuous deployment/delivery

Making it hackable: Easy deployments

44

Running main all the time: what do you mean with "you are scared"?

▸ Merging an MR means deploying

▸ At the end of a successful review, an MR is only approved

▸ For CKI team members, MR author merges themselves

･ Whoever does the merging has to handle any 💥 fallout 💥
･ Not Done on a Friday or right before the end of the work day



Making it hackable: Easy deployments

Reminder: CKI service structure

45

Everything is better in layers

▸ Essential infrastructure outside the control of CKI

･ OpenShift, Beaker, AWS, gitlab.com, ...

▸ Communication fabric

･ AMQP cluster hosting work queues, webhook receiver, ...

▸ Internal microservices

･ Trigger pipelines, run them to completion, send email reports, ...

▸ Pipeline components

･ Gitlab-runner, test database, beaker provisioner, ...



Making it hackable: Easy deployments

Microservices: automated deployment

46

Move fast and break all things: deployment automation and no clicking allowed

▸ Everything is a container image

･ IS_PRODUCTION=false env variable to prevent interference

▸ Follow best practices, e.g. no configuration in the images

▸ One deployment repo for Kubernetes YAMLs/Ansible for all projects

▸ Everything is deployed from there, no manual editing allowed

▸ Everything is redeployed on each change (~105 deployment jobs)

･ keeps everybody honest...



Making it hackable: Easy deployments

Microservices: Local deployments

47

You have to start small

▸ Build the image locally:

cki_build_image.sh irc-bot

▸ Or pull the image from the merge request:

podman pull registry.gitlab.com/cki-project/irc-bot:mr-123

▸ Use direnv and .envrc to keep configuration:

podman run -e var=value …

▸ Or just use the one-shot CLI interface to the service

▸ Summary: ok, but getting a working local configuration is painful



Making it hackable: Easy deployments

Microservices: testing deployments

48

Hopefully it doesn't bring down the cluster

▸ Deploys into K8s in non-production mode alongside production

▸ CLI on deployment repository checkout:

PROJECT_NAME=irc-bot PROJECT_CONTEXT=ocp4_prod \
 MERGE_REQUEST=mr-123 ./openshift_staging_{create,destroy}.sh

▸ From the GitLab UI:



Making it hackable: Easy deployments

Microservices: production deployments

49

Did I mention "scared"?

▸ Merging to main triggers automatic redeployment

▸ For unmerged code, from the GitLab UI:

▸ Can be rolled back in the same way



Making it hackable: Easy deployments

Pipeline: local deployments

50

Pip is reliable and stable right?

▸ Pipeline: Python CLI tools duct taped by Bash, pip and YAML

･ Sadly no local testing of all the YAML 

▸ For the python tools, install via pip:

git clone https://gitlab.com/cki-project/kpet
python3 -m pip install -e .
kpet --help

▸ Tools are designed to work outside of the pipeline



Making it hackable: Easy deployments

Pipeline: canary deployments

51

Being nice and friendly to our future robot overlords

▸ In the MR, talk to the bot which does the right thing for the repo

･ Rerun old successful pipelines with new code/YAML/config

･ Tagged so they do not cause user-visible effects



Making it hackable: Easy deployments

Pipeline: production deployments

52

Also scary

▸ New code gets automatically picked up after merging to main

▸ Rollback by git revert



https://cki-project.org/
https://gitlab.com/cki-project/

Questions?

https://cki-project.org/
https://gitlab.com/cki-project/

