

Introduction

Continuous Kernel Integration: problem statement

Avoiding grumpy kernel developers

Cl for the Linux Kernel:

» For each commit under test, run a build+test pipeline to completion
> |deally that means:

detecting a commit

triggering a pipeline

reporting results

» How hard canit be...

Ime

1

onat

Q.
=
O
¥
C
O

Introduction

Simpler times: just running pipelines

"You can never go wrong by using Jenkins"

> Jenkins environment split into staging/production
> alot of Python + Groovy
» an OpenShift project and a lot of clicking

... doesn't scale that well (=

Introduction

Continuous Kernel Integration: problem statement, revised

Prevent bugs from being merged into kernel trees by providing Cl as a service

Kernel developers Test Maintainers
» Onboard new kernel trees » Onboard new kernel test (frameworks)
» Run compile and testing pipelines for Linux >

Configuration of targeted testing
kernels from Brew, Koji, git repos, GitLab

MRs, Patchwork, ...
» RPM package gating
» Provide infrastructure for kernel workflow

» Visualization and statistics for test failures

yscape-ph

se-cl{

: AL A
el

om

O
0

Introduction

Serverless
Processes
Cross-architecture
Deploy before merge

Open Source SaaS

Buzzword bingo

Turns out this is slightly more complicated

Microservices
Agile

Cloud
Kubernetes

Site Reliability Engineering

Containers
DevOps
Chatbot

Default to Open

Continuous Delivery

>r-paper-bag-141496/

Part 1. Keeping it running (SRE)

Keeping it running

General idea: reliable service on unreliable infrastructure

Murphy and It's Always DNS

> Lemma 1: Any component/dependency that can fail will fail
.. some will fail more than others

> Lemma 2: nearly all failures can be retried successfully
.. but we also have to detect the other ones

» So failures need to be...
Prevented: fewer/simpler components/dependencies
Detected: logging, monitoring, alerting

Recovered: retries at all levels, fallbacks

10

n

Keeping it running

Some background: CKI service structure

Everything is better in layers

Essential infrastructure outside the control of CKI
OpenShift, Beaker, AWS, gitlab.com, ...
Communication fabric
AMQP cluster hosting work queues, webhook receiver, ...

Internal microservices

Trigger pipelines, run them to completion, send email reports, ...

Pipeline components

Gitlab-runner, test database, beaker provisionet, ...

12

Keeping it running: Prevention

Keeping it running: prevention

Minimize the essentials

Less critical pieces means less critical failures

» Essential components

Needed for the service to run (SPOFs)
» Necessary components

Have to work at least sometimes
» Optional components

Only provide observability and increase reliability

Keeping it running: prevention

Minimization example 1. Message Queues

Loose coupling for code

Message queues instead of REST APls
Reliable and distributed
Increase service portability
Automatically reprocessed failed messages after some time
Examples at CKI:
AWS-based RabbitMQ cluster with automatic retry queues
Reliable webhooks: webhook-bridge
Retries for UMB/fedmsg processing: amqgp-bridge

https.//cki-project.org/docs/hacking/operations/messaging/

Keeping it running: prevention

Minimization example 2: 53 buckets

Loose coupling for data

S3 buckets instead of NFS, git hosting, etc
Ubiquitous, fast and highly reliable: AWS, OCS, MinlQ, ...
Can be used as poor man's database
Increase service portability
Examples at CKI:
Ccache
Caching git repositories as tarballs
Pipeline artifacts

Static files and configurations

Keeping it running: prevention

Minimization example 3: Container images

Commoditize all the things

Serverless > containers > disposable VMs > pet VMs
Infrastructure becomes somebody else's problem
Everything wrapped up into container images to freeze time
Examples at CKI:
AWS Lambda to host webhook bridge
Gitlab-runner to spawn jobs in docker, K8s, disposable VMs
OpenShift/K8s as workload AP

17

Keeping it running: Detection

Keeping it running: detection

>

>

>

Detection

keeping track of many, many pieces

Build and testing pipelines, micro services, cron jobs, FaaS
AWS, OpenStack, K8s clusters, ...

Logging, metrics, monitoring, alerting

Keeping it running: detection

Logging: Loki

at least not > /dev/null

» Standardized Python logger names and levels
Easier to read and configure

» Putting all the logs on a common place
Shared volume within one K8s project
Human friendly, easily grepable

» Grafana Loki stack for processing
‘Like Prometheus, but for logs!’

Indexed and easy retention policies

20

Keeping it running: detection

Metrics: Prometheus

everything deserves a /metrics endpoint

Expose internal status of services
Monitor what a service is doing and how long it's taking
Prometheus as an import-and-forget solution

Python's prometheus-client

Built in on many services
K8s autodiscover and lay back

Visualize via Grafana

https://github.com/prometheus/client_python

a & o

88 Datawarehouse / Micro Services % <&

v Triager
Message Processing Time

10s

100 ms

10ms ¢ = T T T t t t ==
1ms t : — T—

100 ps T T T T —

10 ps

08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

v KCIDB Forwarder

Message Processing Time

10 ms
1ms
100 ys

10 ps

08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

v KCIDB Submitter
Message Processing Time

10.7 min —- = = i

12:00

12:00

12:30

12:30

T

hi+ & 2 @ Last 6 hours

Production Queues

0.500

-0.50

-1

1L 08:00

13:30

10:00 12:00

Production Queues

0.500

-0.50

-1
08:00

13:00

13:30

10:00 12:00

Production Queues

= = 6

=5

32s
160s - - 7

R e e R

BOms F

Message Processing Time

v

.

11:30

Al RO BETERBREER 0 S

2 +

13:30

08:00 10:00 12:00

Production Queues

v il | 1

v

Q|| & [Tm:~

Pods Count

Pods Count

Pods Count

Pods Count

Keeping it running: detection

Monitoring: Monit

Just assume no one monitors their services

» Keep track of 3rd party resources that we depend on
> Monit as a simple solution for monitoring

Hosts uptime

NFS file systems uptime and size

Beaker hosts queues

S3 bucket sizes

RabbitMQ messages and queues

» Store instant statuses and record downtimes

22

https://mmonit.com/monit/

& Infrastructure / Monit v <3 @ 2020-12-06 22:42:59 to 2020-12-07 21:58:10utc ~

Systems Status History

Filesystem - cki-rhel-data-eng-000-nfs
Filesystem - cki-rhel-data-eng-001-nfs
Filesystem - cki-rhel-data-eng-002-nfs
Filesystem - datawarehouse-db-data
Filesystem - etherpad
Filesystem - minio
- Beaker
- Beaker Archive
- CKI Blog
- Containers - PSI
- Containers - gitlab.com
Data Warehouse
- Data Warehouse Internal
- Git - Gerrit
- Git - Prod Westford
- Git - kernel.org
- GitLab CE on xci32
- IRC Server - Brno
- IRC Server - Raleigh
- IRC Server - Westford
- Internal Docs
- NFS - rhel5-nfs
- NFS - rhel6-nfs
- NFS - rhel7-nfs
NFS - rhei8-nfs
- Patchworkv1
- Patchworkv2
- RabbitMQ A (AWS)
- RabbitMQ B (AWS)
- RabbitMQ C (AWS)
- gitlab-runner AWS B
- gitlab-runner OCP 3.11 (high)
- gitlab-runner OCP 3.11 (normal)
- gitlab-runner OCP 4.3 (high)
- gitiab-runner OCP 4.3 (normal)
- gitlab-runner OCP 4.5 (high)
- gitlab-runner OCP 4.5 (normal)
- gitlab-runner hpe-apolio
- gitiab-runner ibm-p8
- gitlab-runner intel-canoepass
- gitlab-runner rock-zvm
- gitlab-runner xci30
- gitlab.com - website
- reporter-ng
- AWS costs: component
- AWS costs: daily
- AWS costs: service
- AWS costs: usage_type
- Beaker queues - aarch64
- Beaker queues - ppc64le
- Beaker gueues - s390x
- Beaker queues - s390x_z13
- Beaker queues - x86_64
- Beaker system - gatto-1.tpb.lab.eng.brq.redhat.com
- Beaker system - gatto-2.tpb.lab.eng.brq.redhat.com
- Beaker system - kernelci-1.s390.bos.redhat.com
- Beaker system - kernelci-2.s390.bos.redhat.com
- Beaker system - kernelci-3.5390.bos.redhat.com
- Beaker system - kernelci-4.s390.bos.redhat.com
- Beaker system - kernelci-5.s390.bos.redhat.com
- Beaker system - kernelci-6.s390.bos.redhat.com

24

Keeping it running: detection

>

>

>

Monitoring: Sentry

How to be the first one to know when everything blows up

Track errorsin real time
Allows to fix the long tail of unlikely errors

sentry.engineering.redhat.com, sentry.io

https://sentry.engineering.redhat.com/
https://sentry.io

25

Keeping it running: detection

>

>

>

Alerting

Where is my unsubscribe button

Source: Monit, Sentry, Grafana

figuring out how to use Alertmanager is still on the TODO list
Notify via dedicated mailing list
Create real-time awareness via IRC

also notify about running pipelines, deployments, ...

26

Keeping it running: Recovery

27

Keeping it running: recovery

>

Retries examples 1

What goes around comes around

Retry every network access multiple times
looping helper for shell code

common Python code to setup a retrying requests session

28

Keeping it running: recovery

>

Retries examples 2

Nothing as motivating to fix a bug as a full message queue

Rescheduling messages with RabbitMQ
Endlessly circulate messages until successfully handled
Automatically reject messages on exception

Use DLX/TTL to requeue messages after some time at the end

29

Keeping it running: recovery

Retries examples 3

“Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.” - Samuel Beckett

> Pipeline Herder:
Keeps track of failed GitLab jobs
Detects common transient errors

Retries jobs with increasing interval of time

30

Keeping it running: recovery

>

>

>

Fallbacks

When retries are not enough

Gitlab Runner's containerized jobs can run anywhere
Runners set up on OSP, Beaker, different OCP clusters, AWS

Fallbacks for multi-arch runners are hard to come by

Part 2: Making it hackable (DevOps)

Making it hackable

Dimensions of hackability

| just made those up

» Openness
Public repos, documentation
MR workflow

> Safety
Continuous Integration: linting and testing
Understandable microservices

» Easy deployment
Local/Testing/Staging/Canary/Production deployments

32

Making it hackable: Openness

Making it hackable: Openness

Open code

From pillar to post

> Nearly everything public: https:/aitlab.com/cki-project ~30 projects

Microservices, pipeline components, container images, ...

» Internal; https:/qitlab.cee.redhat.com/cki-project

Put another firewall in front of secret stuff
Credentials, internal docs, RHEL configuration, legacy projects
Deployment configuration including secrets

> WIP:

split deployment into public YAML and private policy + secrets

34

https://gitlab.com/cki-project
https://gitlab.cee.redhat.com/cki-project

35

Making it hackable: Openness

Open documentation

"A little inaccuracy saves tons of explanations” - H. H. Munro

Public: https.//cki-project.org/docs/hacking/
Plus individual README.md files per repo
Inventory: https.//cki-project.org/docs/hacking/inventory/

Components, dependencies, monitoring (WIP)

Internal; https:/documentation.internal.cki-project.orq/

Documentation Friday
WIP:

Integration of different pieces, internal -> public

https://cki-project.org/docs/hacking/
https://cki-project.org/docs/hacking/inventory/
https://documentation.internal.cki-project.org/

B lookaside-static.yml [906 Bytes Lock Replace Delete [R

1 i S
2 kind: cronjob
3 summary: Sync the lookaside git repository to an S3 bucket
4 description: |
5 Some files need to be hosted somewhere to be accessible during tests without
6 SSL. For that purpose, the git-s3-sync module can sync the lookaside git
7 repository at https://gitlab.com/cki-project/lookaside/ to an S3 bucket.
8
9 infrastructure: ocp45
10
11 people:
12 - name: infra
13
14 docs:
15 - name: README
16 url: https://gitlab.com/cki-project/schedule-bot#git s3 sync
17 repo: https://gitlab.com/cki-project/schedule-bot
18 path: README.md
19
20 sources:
21 - name: schedule-bot
22 repo: https://gitlab.com/cki-project/schedule-bot
23 path: git s3 sync
24 - name: deployment-all
25 repo: https://gitlab.cee.redhat.com/cki-project/deployment-all
26 path: schedules/lookaside.yml
2 dependencies:
9 runtime:

- name: storage/s3-aws-arr
annotation: writes

- name: external/gitlab-com
annotation: clones

W Ww W w N NN
(o)

W N e

[«

000 CKI PROJECT Documentation News Dev Blog Q

Q Search this site... Documentation / Hacking / Inventory / Cron jobs / lookaside-static

Documentation 'OO kaSide-Static

Kernel developers
Test maintainers Some files need to be hosted somewhere to be accessible during tests without SSL. For that purpose,
the git-s3-sync module can sync the lookaside git repository at https://gitlab.com/cki-project

Hackin
& /lookaside/ to an S3 bucket.

Contributing

RECs ¢ Kind: cronjob
Operations ® |nfrastructure: ocp45
Inventory *feepie:
_ O infra
Services)
¢ Documentation:
Cron jobs o README: README.md at https:/gitlab.com/cki-project/schedule-bot
datawarehouse- e Sources:
backup o schedule-bot: git_s3_sync at https://gitlab.com/cki-project/schedule-bot
datawarehouse- o deployment-all: schedules/lookaside.yml at https:/gitlab.cee.redhat.com/cki-project
report-crawler /deployment-all
git-cache- e Runtime dependencies:
updater o writes: storage/s3-aws-arr
lookaside-kernel- © clones: external/gitlab-com (missing)

configs

38

Making it hackable: Openness

Open daily operations

Graphical strings also known as emojis

Public issue tracker: gitlab.com, moved from internal Jira

Internal #kernelci IRC channel: people and bots
Everybody and their emojis invited to join
Discussions, deployments, alerting, pipelines ...

MR-based workflow

RFC process: https://cki-project.org/docs/hacking/rfcs/

Asking for feedback

https://cki-project.org/docs/hacking/rfcs/

Documentation / Hacking / RFCs / CKI-001

CKI-001: CKI feedback mechanism

Description of the process behind the CKI feedback mechanism based on Requests for Comments (RFCs)

Michael Hofmann - cki-project/documentation!49

1 Abstract

This document specifies the process behind the feedback mechanism for the CKI project based on Request for Comments (RFCs).

Each RFC documents a need, proposed solutions and links to the related discussions.

2 Motivation

The internal Red Hat #kernelci IRC channel is the place where nearly all CKI project communication happens. Unless a project
member is online, logged into IRC and paying attention all the time, ad-hoc discussion of important topics might be missed. As a
consequence, people might feel left out of the decision-making process, and proposed solutions might suffer from the lack of
feedback.

3 Approach

A structured process for gathering feedback is introduced.

CKI RFCs (“Requests for Comments”) are markdown documents proposing to create or change something, and soliciting
discussion and feedback. They live in the documentation repository and can be browsed at https://cki-project.org/docs/hacking
/rfcs/. They are submitted and discussed via merge requests. Within the default time frame of one week, everyone is invited to
give feedback on them.

[Edit this page

¢ Create docum

Making it hackable: Safety

Making it hackable: Safety

Continuous integration

Who to blame for line length limits

» As much linting and testing as possible
Shell, Shell-in-YAML
Python: pylint, isort, flake8, pydocstyle, pytest, coverage
Documentation: markdown, URLS, review environments

» One linting script to rule [all Python repositories] based on tox
Simple to run locally, in podman container, in Cl

> WIP:
Convincing the team that using a formatter is a good thing

For libraries, testing all dependent projects

4

Making it hackable: Safety

Understandable microservices

head <-> code size relation

» Code changes need to be predictable!
Simple mental models have to be good enough
If everybody is too scared to touch it, split it up
» Loose coupling means better interfaces
> Prioritize cleanups and fixes

Ignore management if they tell you otherwise

42

Making it hackable: Easy deployments

Making it hackable: Easy deployments

In general: continuous deployment/delivery

Running main all the time: what do you mean with "you are scared"?

» Merging an MR means deploying

> At the end of a successful review, an MR is only approved

» For CKI team members, MR author merges themselves
Whoever does the merging has to handle any 3£ fallout 3§
Not Done on a Friday or right before the end of the work day

44

45

Making it hackable: Easy deployments

Reminder: CKl service structure

Everything is better in layers

» Essential infrastructure outside the control of CKI
OpenShift, Beaker, AWS, gitlab.com, ...
» Communication fabric
AMQP cluster hosting work queues, webhook receiver, ...

» Internal microservices

Trigger pipelines, run them to completion, send email reports, ...

» Pipeline components

Gitlab-runner, test database, beaker provisionet, ...

Making it hackable: Easy deployments

Microservices:. automated deployment

Move fast and break all things: deployment automation and no clicking allowed

>

46

Everything is a container image

IS_PRODUCTION=false env variable to prevent interference
Follow best practices, e.g. no configuration in the images
One deployment repo for Kubernetes YAMLs/Ansible for all projects
Everything is deployed from there, no manual editing allowed
Everything is redeployed on each change (~105 deployment jobs)

keeps everybody honest...

47

Making it hackable: Easy deployments

Microservices:. Local deployments

You have to start small

» Build the image locally:

cki_build_image.sh irc-bot
> Or pull the image from the merge request:

podman pull registry.gitlab.com/cki-project/irc-bot:mr-123
» Use direnv and .envrc to keep configuration:

podman run -e var=value ..

> Orjust use the one-shot CLI interface to the service

» Summary: ok, but getting a working local configuration is painful

Making it hackable: Easy deployments

Microservices:. testing deployments

Hopefully it doesn't bring down the cluster

> Deploys into K8s in non-production mode alongside production

» CLI on deployment repository checkout:

PROJECT_NAME=irc-bot PROJECT_CONTEXT=ocp4_prod \
MERGE_REQUEST=mr-123 ./openshift_staging_{create,destroy}.sh

» From the GitLab UI;

I«l Request to merge mh21:add-deployment-bot [§ intomain

Check out branch & v
The source branch is 4 commits behind the target branch
@ Detached merge request pipeline #258897328 running for 7bcadbdf Q@) & -
Coverage 60.86% (-1.42%) from 1 job Q Sae S
Can be manually deployed to mr-324/deployment-bot > Deploy B

48

49

Making it hackable: Easy deployments

Microservices. production deployments

Did | mention "scared"?

» Merging to main triggers automatic redeployment

» For unmerged code, from the GitLab UI:

Request to merge mh21:add-deployment-bot [intomain
I'] 9 9 g - Check out branch & v

The source branch is 4 commits behind the target branch

@ Detached merge request pipeline #258897328 running for 7bcadbdf

~N N D
QIQIONEI
Coverage 60.86% (-1.42%) from 1 job @ RN

Can be manually deployed to production/cki-tools > Deploy &

» Can be rolled back in the same way

50

Making it hackable: Easy deployments

Pipeline: local deployments
Pip is reliable and stable right?

» Pipeline: Python CLI tools duct taped by Bash, pip and YAML
Sadly no local testing of all the YAML
» For the python tools, install via pip:

git clone https://gitlab.com/cki-project/kpet
python3 -m pip install -e .
kpet --help

» Tools are designed to work outside of the pipeline

Making it hackable: Easy deployments

Pipeline: canary deployments

Being nice and friendly to our future robot overlords

» Inthe MR, talk to the bot which does the right thing for the repo

Rerun old successful pipelines with new code/YAML /config

Tagged so they do not cause user-visible effects

g Veronika Kabatovéa @veruu - 1 week ago owner @® D2 ¢

Resolved by Veronika Kabatova 1 week ago

@cki-ci-bot please test [cki/623375] but with [builder_image=quay.io/cki/builder-rhel6] [builder_image_tag=mr-233]
[architectures=i686 x86_64 s390x] [git_url=https://gitlab.com/redhat/rhel/src/kernel/rhel-6.git] [branch=main]
[commit_hash=bc29db5047f8fe2c5ffb5Sae0b46ce43a3ff2a476] [native_tools=false] [name=kernel-rhel6] [kpet_tree_family=rhel6]

Edited by Veronika Kabatova 1 week ago
®1 @
v Collapse replies

“ ™\ CKICIBot @cki-ci-bot - 1 week ago Maintainer @ & 3

Group Branch ID Status

cki 623375 = 623781 | failed
51

52

Making it hackable: Easy deployments

Pipeline: production deployments

Also scary

» New code gets automatically picked up after merging to main

» Rollback by git revert

https://cki-project.org/
https://gitlab.com/cki-project/

