
Cyborg Infra Workshop 2021: Day 2Cyborg Infra Workshop 2021: Day 2

How the CKI team hacks
on its service
How the CKI team hacks
on its service

Iñaki MalerbaIñaki Malerba Michael HofmannMichael Hofmann

1

Stef's Open Source playbook to build SaaS Community

2

Picking some quotes

To enable efficient contributions both from the team and the world:

▸ Discover the documentation for contributing
▸ Understand what is running, the makeup of the service
▸ Identify the component
▸ Build the component locally
▸ MRs tested automatically
▸ After cross-check, MRs deployed in a testing environment
▸ ...

… in other words, documentation and DevOps

https://docs.google.com/document/d/1pVnVIYgLSmxZ5JYn_HkNWAPpVaKBAeevQj8VYkeAjqs/edit#

Dimensions of hackability

3

I just made those up

▸ Openness
･ Public repos, documentation
･ MR workflow

▸ Safety
･ Continuous Integration: unit, integration, system tests
･ Can be run locally without interfering with production

▸ Automated deployment
･ Testing/Staging/Canary deployments
･ Continuous Delivery/Deployment

The good parts...

4

The good parts...

Public repos (a lot)

The good parts...

5

From pillar to post

▸ Nearly everything public: https://gitlab.com/cki-project ~30 projects

･ Microservices, pipeline components, container images, …
･ Issue tracker

▸ Internal: https://gitlab.cee.redhat.com/cki-project

･ Put another firewall in front of secret stuff
･ Credentials, internal docs, RHEL configuration, legacy projects
･ Deployment configuration including secrets

▸ ?? Secret management:
･ Split deployment into public configuration and internal secrets?

https://gitlab.com/cki-project
https://gitlab.cee.redhat.com/cki-project

The good parts...

Documentation

6

“A little inaccuracy saves tons of explanations” - H. H. Munro

▸ Public: https://cki-project.org/docs/hacking/

･ Plus individual README.md files per repo

▸ Internal: https://documentation.internal.cki-project.org/

▸ Inventory: https://cki-project.org/docs/hacking/inventory/

･ Components, dependencies, monitoring (WIP)

▸ RFC process: https://cki-project.org/docs/hacking/rfcs/

･ Asking for feedback
▸ ?? Integration of different pieces of documentation:
･ At the moment, inventory links to pieces

https://cki-project.org/docs/hacking/
https://documentation.internal.cki-project.org/
https://cki-project.org/docs/hacking/inventory/
https://cki-project.org/docs/hacking/rfcs/

7

8

9

The good parts...

Continuous integration

10

Who to blame for line length limits

▸ GitLab CI YAML file
･ Run container-based shell jobs for branches/tags/MRs

▸ Python linting: pylint, isort, flake8, pydocstyle, pytest wrapped in tox
･ Simple to run locally, in podman container, in CI
･ One common linting script to rule [all Python repositories]
･ Test coverage with regression check
･ Build and upload container images per MR
･ Convincing the team of using black is another matter

▸ Shell linting: shellcheck, check shell-in-yaml
▸ Documentation linting: link checking, review environments

The good parts...

MR workflow/continuous deployment

11

Running main all the time: what do you mean with "you are scared"?

▸ Merging an MR means deploying
▸ At the end of a successful review, an MR is only approved
▸ For CKI team members, MR author merges themselves
･ Whoever does the merging has to handle any fallout 💥 💥

･ Not Done on a Friday or right before the end of the work day
▸ ?? Rollbacks:
･ Reverting a commit: 15..30 minutes until deployment
･ Temporary: oc describe + oc tag image@sha256 is/name

The good parts...

Automated deployment

12

Move fast and break all things: deployment automation

▸ One deployment repo for Kubernetes YAMLs/Ansible for all projects
▸ Everything is deployed from there, no manual editing allowed
▸ Everything is redeployed on each change
･ 93 deployment jobs...

The good parts...

13

The good parts: summary
Patting yourself on the back

▸ Public repos: 8/10
･ Still wondering about the secrets split

▸ Documentation: 6/10
･ Inventory idea stolen from EXD seems promising

▸ Continuous integration: 8/10
･ No "prototypes", do it correctly from the beginning

▸ Continuous deployment: 8/10
･ Poor-man's rollback by reverting commits

14

… and the less good parts

… and the less good parts

Automated deployments of unmerged code

15

The two elephants in the room

▸ Local deployments
･ Somehow, run the code locally

▸ Staging deployments
･ Somehow, run the code somewhere else
･ Should be able to run production(-like) workloads
･ Must not interfere with production

… and the less good parts

Some background: CKI service structure

16

Everything is better in layers

▸ Essential infrastructure outside the control of CKI
･ OpenShift, Beaker, AWS, gitlab.com, ...

▸ Communication fabric
･ AMQP cluster hosting work queues, webhook receiver, ...

▸ Internal microservices
･ Trigger pipelines, run them to completion, send email reports, ...

▸ Pipeline components
･ Gitlab-runner, test database, beaker provisioner, ...

… and the less good parts

Testing deployments of the communication fabric

17

High Stakes GamblingDevelopment

▸ Very little code + Ansible deployment:
･ GitLab webhook receiver for sending AMQP: AWS Lambda
･ RabbitMQ cluster: AWS Route53/EC2

▸ Local deployments: not really possible atm
▸ Staging deployment:
･ Shell script to setup staging Lambda + AMQP cluster (WIP)
･ Manual updates of Lambda ZIP file

▸ ?? New AWS/Lambda container image support

… and the less good parts

Testing deployments of internal microservices

18

Ask YouTube for "LAMBDA - A Serverless Musical"

▸ Everything packed into container images
▸ IS_PRODUCTION=false env variable to prevent interference
▸ Local deployments:
･ Services have one-shot CLI interfaces (WIP)
･ Podman run, but there are a lot of env variables to get right

▸ Staging deployment:
･ shell script to deploy container images from MR
･ modifies configs to run them in non-production mode (WIP)
･ no bot support yet (planned)

… and the less good parts

Testing deployments of pipeline components

19

Pip is reliable and stable right?

▸ Python CLI tools duct taped by Bash, pip and YAML
▸ Local deployments:
･ Standalone CLI tools: well supported
･ Pipeline YAML: not at all

▸ Staging deployments:
･ In the MR, talk to the bot which does the right thing for the repo
･ Rerun old successful pipelines with new code/YAML/config
･ Tagged so they do not cause user-visible effects
･ Same observability as production pipelines

20

… and the less good parts

21

The bad parts: summary
After all, tomorrow is another day

▸ Communication fabric: 2/10
･ Lambda container images seem promising

▸ Internal microservices: 6/10
･ Reference secrets for local deployment, bot support missing

▸ Pipeline components: 8/10
･ Production workloads in end-to-end tests for MR code

▸ ?? Improvements:
･ We fail mostly in making it easy to deploy stuff locally
･ Problematic observability of deployments for untrusted users

	How the CKI team hacks on its service
	Stef's
	Dimensions of hackability
	The good parts...
	Public repos (a lot)
	Documentation
	Slide 7
	Slide 8
	Slide 9
	Continuous integration
	MR workflow/continuous deployment
	Automated deployment
	The good parts: summary
	… and the less good parts
	Automated deployments of unmerged code
	Some background: CKI service structure
	Testing deployments of the communication fabric
	Testing deployments of internal microservices
	Testing deployments of pipeline components
	Slide 20
	The bad parts: summary

