

Stef's Open Source playbook to build SaaS Community

Picking some quotes

To enable efficient contributions both from the team and the world:

Discover the documentation for contributing
Understand what is running, the makeup of the service
|dentify the component

Build the component locally

MRs tested automatically

After cross-check, MRs deployed in a testing environment

v vV v v v v v

... in other words, documentation and DevOps

https://docs.google.com/document/d/1pVnVIYgLSmxZ5JYn_HkNWAPpVaKBAeevQj8VYkeAjqs/edit#

Dimensions of hackability

| just made those up

» Openness
Public repos, documentation
MR workflow
» Safety
Continuous Integration: unit, integration, system tests
Can be run locally without interfering with production
» Automated deployment
Testing/Staging/Canary deployments

Continuous Delivery/Deployment

The good parts...

The good parts...

The good parts...

Public repos (a lot)

From pillar to post

» Nearly everything public: https:/qitlab.com/cki-project ~30 projects

Microservices, pipeline components, container images, ...
Issue tracker

» Internal; https://qitlab.cee.redhat.com/cki-project

Put another firewall in front of secret stuff
Credentials, internal docs, RHEL configuration, legacy projects
Deployment configuration including secrets

» 7?7 Secret management:

Split deployment into public configuration and internal secrets?

https://gitlab.com/cki-project
https://gitlab.cee.redhat.com/cki-project

The good parts...

Documentation

“A little inaccuracy saves tons of explanations” - H. H. Munro

Public; https://cki-project.org/docs/hacking/
Plus individual README.md files per repo

Internal: https:/documentation.internal.cki-project.org/

Inventory: https.//cki-project.org/docs/hacking/inventory/

Components, dependencies, monitoring (WIP)
RFC process: https://cki-project.org/docs/hacking/rfcs/
Asking for feedback

?7? Integration of different pieces of documentation:

At the moment, inventory links to pieces

https://cki-project.org/docs/hacking/
https://documentation.internal.cki-project.org/
https://cki-project.org/docs/hacking/inventory/
https://cki-project.org/docs/hacking/rfcs/

B lookaside-static.yml [906 Bytes

Ll PRd =

kind: cronjob

summary: Sync the lookaside git repository to an S3 bucket

description: |
Some files need to be hosted somewhere to be accessible during tests without
SSL. For that purpose, the git-s3-sync module can sync the lookaside git
repository at https://gitlab.com/cki-project/lookaside/ to am 53 bucket.

infrastructure: ocp45

people:
- name: infra

docs:
- name: README
url: https://gitlab.com/cki-project/schedule-bot#git s3 sync
repo: https://gitlab.com/cki-project/schedule-bot
path: README.md

sources:
- name: schedule-bot
repo: https://gitlab.com/cki-project/schedule-bot
path: git s3 sync
- name: deployment-all
repo: https://gitlab.cee.redhat.com/cki-project/deployment-all
path: schedules/lookaside.yml

dependencies:
runtime:
- name: storage/s3-aws-arr
annotation: writes
- name: external/gitlab-com
annotation: clones

Web IDE Lock Replace Delete

)

@ﬁa CKI PROJECT Documentation News Dev Blog o}

Q Search this site... Documentation / Hacking / Inventory / Cron jobs / lookaside-static

Documentation Ioo kaSide-Sta tic

Kernel developers
Test maintainers Some files need to be hosted somewhere to be accessible during tests without SSL. For that purpose,
the git-s3-sync module can sync the lookaside git repository at https://gitlab.com/cki-project

Hacking
/lookaside/ to an 53 bucket.
Contributing
RFCs ® Kind: cronjob
Operations ¢ [nfrastructure: ocp45
Inventory i aapke
O infra
Services ,
) ¢ Documentation:
Cron jobs © README: README.md at https://gitlab.com/cki-project/schedule-bot
datawarehouse- ® Sources:
backup o schedule-bot: git_s3_sync at https://gitlab.com/cki-project/schedule-bot
datawarehouse- o deployment-all: schedules/lookaside.yml at https://gitlab.cee.redhat.com/cki-project
report-crawler /deployment-all
git-cache- e Runtime dependencies:
updater O writes: storage/s3-aws-arr
lookaside-kernel- © clones: external/gitlab-com (missing)

configs

[# Edit this page

& Create docum

CKI-001: CKI feedback mechanism

Description of the process behind the CKI feedback mechanism based on Requests for Comments (RFCs) 3 Approach

Documentation / Hacking / RFCs / CKI-001

Michael Hofmann - cki-project/documentation!45 4 Benefits

1 Abstract

This document specifies the process behind the feedback mechanism for the CKl project based on Request for Comments (RFCs).
Each RFC documents a need, proposed solutions and links to the related discussions.

2 Motivation

The internal Red Hat #kernelci IRC channelis the place where nearly all CKl project communication happens. Unless a project
member is online, logged into IRC and paying attention all the time, ad-hoc discussion of important topics might be missed. As a
consequence, people might feel left out of the decision-making process, and proposed solutions might suffer from the lack of
feedback.

3 Approach

A structured process for gathering feedback is introduced.

CKI RFCs ("Requests for Comments”) are markdown documents proposing to create or change something, and soliciting
discussion and feedback. They live in the documentation repository and can be browsed at https://cki-project.org/docs/hacking
/rfcs/. They are submitted and discussed via merge requests. Within the default time frame of one week, everyone is invited to
give feedback on them.

10

The good parts...

Continuous integration

Who to blame for line length limits

GitLab CI YAML file
Run container-based shell jobs for branches/tags/MRs
Python linting: pylint, isort, flake8, pydocstyle, pytest wrapped in tox
Simple to run locally, in podman container, in Cl
One common linting script to rule [all Python repositories]
Test coverage with regression check
Build and upload container images per MR
Convincing the team of using black is another matter
Shell linting: shellcheck, check shell-in-yaml

Documentation linting: link checking, review environments

n

The good parts...

>

>

MR workflow/continuous deployment

Running main all the time: what do you mean with "you are scared"?

Merging an MR means deploying
At the end of a successful review, an MR is only approved
For CKl team members, MR author merges themselves
Whoever does the merging has to handle any fallout
Not Done on a Friday or right before the end of the work day
7?7 Rollbacks:
Reverting a commit: 15..30 minutes until deployment

Temporary: oc describe + oc tag image@sha256 is/name

12

The good parts...

Automated deployment

Move fast and break all things: deployment automation

» One deployment repo for Kubernetes YAMLs/Ansible for all projects
» Everythingis deployed from there, no manual editing allowed
» Everything is redeployed on each change

93 deployment jobs...

The good parts...

The good parts: summary
Patting yourself on the back

Public repos: 8/10

Still wondering about the secrets split
Documentation: 6/10

Inventory idea stolen from EXD seems promising
Continuous integration: 8/10

No "prototypes", do it correctly from the beginning
Continuous deployment: 8/10

Poor-man's rollback by reverting commits

14

..and the less good parts

...and the less good parts

Automated deployments of unmerged code

The two elephants in the room

» Local deployments
Somehow, run the code locally
» Staging deployments
Somehow, run the code somewhere else
Should be able to run production(-like) workloads

Must not interfere with production

...and the less good parts

Some background: CKl service structure

Everything is better in layers

Essential infrastructure outside the control of CKi
OpenShift, Beaker, AWS, gitlab.com, ...
Communication fabric
AMQP cluster hosting work queues, webhook receiver, ...

Internal microservices

Trigger pipelines, run them to completion, send email reports, ...

Pipeline components

Gitlab-runner, test database, beaker provisioner, ...

...and the less good parts

Testing deployments of the communication fabric

>

>

>

High Stakes GamblirgDevelopment

Very little code + Ansible deployment:
GitLab webhook receiver for sending AMQP: AWS Lambda
RabbitMQ cluster: AWS Route53/EC2

Local deployments: not really possible atm

Staging deployment:
Shell script to setup staging Lambda + AMQP cluster (WIP)
Manual updates of Lambda ZIP file

7?7 New AWS/Lambda container image support

...and the less good parts

Testing deployments of internal microservices
Ask YouTube for "LAMBDA - A Serverless Musical"

» Everything packed into container images
» |IS_PRODUCTION=false env variable to prevent interference
» Local deployments:
Services have one-shot CLI interfaces (WIP)
Podman run, but there are a lot of env variables to get right
» Staging deployment:
shell script to deploy container images from MR
modifies configs to run them in non-production mode (WIP)

no bot support yet (planned)

...and the less good parts

Testing deployments of pipeline components
Pip is reliable and stable right?

» Python CLI tools duct taped by Bash, pip and YAML
» Local deployments:

Standalone CLI tools: well supported

Pipeline YAML.: not at all

» Staging deployments:
In the MR, talk to the bot which does the right thing for the repo

Rerun old successful pipelines with new code/YAML /config
Tagged so they do not cause user-visible effects

Same observability as production pipelines

Veronika Kabatova @veruu - 6 days ago

Resolved by Veronika Kabatova 6 days ago

Cwner

O 0.

@cki-ci-bot please test [cki/620247] with [compiler=clang] again but a new container that has which:

[builder_image=quay.io/cki/builder-fedora] [builder_image_tag=mr-213]

g ®

v Collapse replies

CKI CI Bot @cki-ci-bot - 6 days ago

Group Branch ID

cki 620247 620902

Edited by CKI CI Bot 6 days ago

Status

| failed

Maintainer

®

21

...and the less good parts

The bad parts: summary

After all, tomorrow is another day

Communication fabric: 2/10
Lambda container images seem promising
Internal microservices: 6/10
Reference secrets for local deployment, bot support missing
Pipeline components: 8/10
Production workloads in end-to-end tests for MR code
?? Improvements:
We fail mostly in making it easy to deploy stuff locally

Problematic observability of deployments for untrusted users

	How the CKI team hacks on its service
	Stef's
	Dimensions of hackability
	The good parts...
	Public repos (a lot)
	Documentation
	Slide 7
	Slide 8
	Slide 9
	Continuous integration
	MR workflow/continuous deployment
	Automated deployment
	The good parts: summary
	… and the less good parts
	Automated deployments of unmerged code
	Some background: CKI service structure
	Testing deployments of the communication fabric
	Testing deployments of internal microservices
	Testing deployments of pipeline components
	Slide 20
	The bad parts: summary

