
Cyborg Infra Workshop 2021: Day 1Cyborg Infra Workshop 2021: Day 1

How the CKI team keeps
its service running
How the CKI team keeps
its service running

Iñaki MalerbaIñaki Malerba Michael HofmannMichael Hofmann

1

Introduction

Problem statement

2

Avoiding grumpy kernel developers

▸ For each commit under test, run a build+test pipeline to completion
▸ Ideally that means:
･ detecting a commit
･ triggering a pipeline
･ reporting results

▸ How hard can it be...

3

https://www.pexels.com/photo/grey-kitten-on-silver-paper-bag-141496/

Name or Service not known

4

Introduction

General idea: reliable service on unreliable infrastructure

5

Murphy and It's Always DNS

▸ Lemmas:
･ Any component/dependency that can fail will fail
･ Some will fail more than others
･ Nearly all failures can be retried successfully
･ But we also have to detect the other ones

▸ So failures need to be…
･ Detected: logging, monitoring, alerting
･ Prevented: redundancy, fewer dependencies
･ Recovered: retries at all levels, fallbacks

Detection

6

Detection

7

Keeping track of many, many pieces

▸ Lots of moving pieces
･ ⏳ Long standing pods
･ ⏱️ Cron jobs
･ ⛈️ Different clouds, different clusters
･ ↕️ Services scaling up/down

▸ Data in different formats
･ 📜 Logs
･ 📊 Data points
･ 🔥 Errors

Keeping track of many, many pieces

Logs collection

8

> /dev/null

▸ Standardized logger names and levels
･ Easier to read and configure

▸ Putting all the logs on a common place
･ Shared NFS between OCP pods
･ Human friendly, easily grepable

▸ Grafana Loki stack for processing
･ ‘Like Prometheus, but for logs!’
･ Indexed and easy retention policies

Keeping track of many, many pieces

High level monitoring

9

Just assume no one monitors their services

▸ Keep track of 3rd party resources that we depend on

▸ Monit as a simple solution for monitoring

･ Hosts uptime
･ NFS file systems uptime and size
･ Beaker hosts queues
･ S3 bucket sizes
･ RabbitMQ messages and queues

▸ Store instant statuses and record downtimes

https://mmonit.com/monit/

* but it works on their computer

Keeping track of many, many pieces

Monitoring: InfluxDB

11

Where we were

▸ Custom solutions per application
･ Different data and intervals
･ Not generic, simple or safe

▸ Scrappers to filter logs and convert them into data points
･ Simpler than adapting sensible apps to push

▸ Telegraf as a PIM to bridge Prometheus to InfluxDB
･ Prometheus is turning into the standard

Keeping track of many, many pieces

Monitoring: Prometheus

12

Where we’re going

▸ Expose services internal status
･ Monitor what a service is doing and how long it’s taking

▸ Prometheus as an import-and-forget solution

･ Python’s prometheus-client

･ Built in on many services
▸ Telegraf sidecar for pods stats
▸ Kubernetes autodiscover and lay back

https://github.com/prometheus/client_python

Keeping track of many, many pieces

Sentry

14

How to be the first one to know when everything blows up

▸ Track errors in real time

▸ Internal: sentry.engineering.redhat.com

･ Community maintained
･ Works great

▸ External: sentry.io

･ Thanks packit!

https://sentry.engineering.redhat.com/
https://sentry.io/

Keeping track of many, many pieces

How to find out what’s wrong?

15

IRC + Grafana FTW

 📨 IRC Alerts

▸ Someone is gonna read that

 📈 Grafana

▸ Easy to hack dashboards

･ Plus there are a ton of templates online !

▸ Allows combining different data sources
▸ Quick alerting and templating

https://grafana.com/grafana/dashboards

16

Prevention

Embrace the problems

Queue all the stuff

17

Avoid losing data

1_ Webhook receiver https://gitlab.com/cki-project/cki-tools/-/tree/main/cki/cki_tools/webhook_receiver

▸ Message Queues are great for communicating pieces
･ Reliable and distributed
･ Allows to reject a message safely

▸ Webhooks are unreliable
･ Convert them to messages! 1

▸ Schedule and retry messages without reinventing the wheel
▸ Test staging with production data
▸ AWS-hosted AMQP cluster becomes SPOF

https://gitlab.com/cki-project/cki-tools/-/tree/main/cki/cki_tools/webhook_receiver

Embrace the problems

Webhooks to AMQP

18

a.k.a. WebHook Receiver

1_ Resilient Messaging Queues https://cki-project.org/docs/hacking/operations/messaging/#use-case-gitlab-webhooks

▸ Plug in any webhook and distribute it reliably

 Anywhere
 +------------+
internal & +->+ Consumer_1 |
gitlab.com AWS Lambda AWS EC2 | +------------+
+--------+ +------------------+ +----------+ | +------------+
| GitLab +--->+ webhook receiver +--->+ RabbitMQ +--+->+ Consumer_2 |
+--------+ +------------------+ +----------+ | +------------+
 . . .
 . . .
 | +------------+
 +->+ Consumer_n |
 +------------+

https://cki-project.org/docs/hacking/operations/messaging/#use-case-gitlab-webhooks

Embrace the problems

Minimize the essentials

19

Less critical pieces means less critical failures

https://documentation.internal.cki-project.org/deployment/unreliable-infrastructure/

▸ Essential components
･ Needed for the service to run

▸ Necessary components
･ Have to work at least sometimes

▸ Optional components
･ Only provide observability and increase reliability

▸ Everything wrapped up into container images to freeze time...

https://documentation.internal.cki-project.org/deployment/unreliable-infrastructure/

20

Recovery

Retry Driven Recovery

Rescheduling Messages with RabbitMQ

21

What goes around comes around

1_ Resilient Messaging Queues https://cki-project.org/docs/hacking/operations/messaging/

▸ Endlessly circulate messages until successfully handled
▸ Use DLX + TTL to requeue messages after some time 1

 x-dead-letter-exchange = e.retry.in
 x-dead-letter-routing-key = {name}
+---------------+ +---------------+ +----------+
| e.prod.{name} +--->+ q.prod.{name} +------------->+ consumer |
+---------------+ +--+--------+---+ +----------+
 | ^
 +-----------------+ +--------------+
 | | routing-key = {name}
 v |
+-----+------+ +----------------+ +-------+-----+
| e.retry.in +--->+ q.retry.{name} +--->+ e.retry.out |
+------------+ +----------------+ +-------------+
 x-dead-letter-exchange = e.retry.out
 x-message-ttl = n seconds

https://cki-project.org/docs/hacking/operations/messaging/

Retry Driven Recovery

Insist until it works

22

“Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.” - Samuel Beckett

▸ Retry every network access multiple times
･ looping helper for shell code
･ common Python code to setup a retrying session

▸ Pipeline Herder:
･ Keeps track of failed GitLab jobs
･ Detects common transient errors
･ Retries jobs with increasing interval of time

Retry Driven Recovery

Fallbacks

23

When retries are not enough for PSI

▸ Gitlab Runner's containerized jobs can run anywhere
▸ Runners set up on OSP, Beaker, different OCP clusters
▸ AWS-based production runners soon TBD™
▸ Fallbacks for multi-arch runners are hard to come by

🎉

24

 💬 RH IRC: #kernelci

 📄 https://cki-project.org

 💾 https://gitlab.com/cki-project

https://cki-project.org/
https://gitlab.com/cki-project

	How the CKI team keeps its service running
	Problem statement
	Slide 3
	Slide 4
	General idea: reliable service on unreliable infrastructure
	Detection
	Detection
	Logs collection
	High level monitoring
	Slide 10
	Monitoring: InfluxDB
	Monitoring: Prometheus
	Slide 13
	Sentry
	How to find out what’s wrong?
	Prevention
	Queue all the stuff
	Webhooks to AMQP
	Minimize the essentials
	Recovery
	Rescheduling Messages with RabbitMQ
	Insist until it works
	Fallbacks
	🎉

