

Introduction

Problem statement

Avoiding grumpy kernel developers

» For each commit under test, run a build+test pipeline to completion
» |deally that means:

detecting a commit

triggering a pipeline

reporting results

» Howhardcanitbe..

Name or Service not known

r-paper-bag-141496/

2021-01-13 04:04:47

2021-01-1218:47:29

2021-01-11 08:38:14

2021-01-06 15:30:31

2021-01-11 10:15:34

2021-01-05 15:56:39

2020-12-14 14:52:12

2021-01-05 15:57:56

2020-11-11 14:55:46

2021-01-08 14:28:07

2020-10-1510:32:14

2020-12-03 21:11:33

2020-10-01 15:59:14

2020-08-18 17:15:28

INC1590072

INC15895939

INC1583836

INC1580976

RITMOB14124

INC1554722

INC1548042

INC1542161

INC1514909

INC1483618

INC1478872

INC1466902

INC1455123

INC1396994

Unable to attach or mount volumes at worker ocp4-grxr2-worker-dlhpp
MNetwork is unstable in OCP 4.5 (ocp4.prod.psi.redhat.com)

Mo pod metrics available in OCP 4.5 (ocp4.prod.psi.redhat.com)

S3 storage (s3.upshift.redhat.com) not working

Error from worker on https://api.ocp4.prod.psi.redhat.com

Unable to spawn PODs on OCP 4.5

Unable to recreate PVC referencing external MFS volume

Can't pull images from registry.gitlab.com

PSI Outage - ocp45 and s3 storage

Unable to mount logging volume on ocp4-grxr2-worker-jl8xp in OCP 4.5 cki proj...

timeouts when mounting internal nfs volumes in ocp 4.5, project cki
OCP 4.5: Processes inside a POD could not fork
Unable to reach 53 buckets at s3.upshift.redhat.com

Connection timeouts from https://git.app.eng.bos.redhat.com

Juanje
Inaki I
Inaki I
Inaki I
Juanje
Micha
Micha
Inaki I
Inaki I
Micha
Micha
Micha
Micha

Micho

Introduction

General idea: reliable service on unreliable infrastructure
Murphy and It's Always DNS

» Lemmas:

Any component/dependency that can fail will fail
Some will fail more than others
Nearly all failures can be retried successfully
But we also have to detect the other ones

» So failures need to be...
Detected: logging, monitoring, alerting
Prevented: redundancy, fewer dependencies

Recovered: retries at all levels, fallbacks

Detection

Detection

Keeping track of many, many pieces

» Lots of moving pieces
Long standing pods
Cron jobs
Different clouds, different clusters
Services scaling up/down
» Datain different formats
Logs
Data points
Errors

Keeping track of many, many pieces

Logs collection
> /dev/null

» Standardized logger names and levels
Easier to read and configure

» Putting all the logs on a common place
Shared NFS between OCP pods
Human friendly, easily grepable

» Grafana Loki stack for processing
‘Like Prometheus, but for logs!’

Indexed and easy retention policies

Keeping track of many, many pieces

High level monitoring

Just assume no one monitors their services

» Keep track of 3rd party resources that we depend on
» Monit as a simple solution for monitoring

Hosts uptime

NFS file systems uptime and size

Beaker hosts queues

S3 bucket sizes

RabbitMQ messages and queues

» Store instant statuses and record downtimes

https://mmonit.com/monit/

28 Monit Services ¢ <€ e B @

Systems Status History

Filesystem - cki-rhel-data-eng-000-n|

Filesystem - cki-rhel-data-eng-001-nfs

Filesystem - cki-rhel-data-eng-002-nfs

Filesystem - datawarehouse-db-data
Filesystem - etherpad

Filesystem - minio

Host - Beaker

Host - Beaker Archive

Host - CKI Blog

Host - Containers - P51

Host - Containers - gitlab.com

Host - Data Warehouse

Host - Data Warehouse Internal

Host - Git - Gerrit

Host - Git - Prod Westford

Hast - Git - kernel.org

Host - GitLab CE on xci32

Host - IRC Server - Brno

Host - IRC Server - Raleigh

Host - IRC Server - Westford

Host - Internal Docs

Host - NFS - rhels-nfs

Hast - NFS - rhel6-nfs

Host - NFS - rhel7-nfs

Host - NFS - rheld-nfs

Host - Patchworkvi

Host - Patchworkv2

Host - RabbitMQ A (AWS)

Hast - RabbithMQ B (AWS)

Hast - RabbitMQ C (AWS)

Host - gitlab-runner AWS B

Host - gitlab-runner OCP 3.1 (high)

Host - gitlab-runner OCP 3.11 (normal)

Host - gitlab-runner OCP 4.3 (high)

Host - gitlab-runner OCP 4.3 (narmal)

Host - gitlab-runner OCP 4.5 (high)

Host - gitlab-runner OCP 4.5 (normal)

Host - gitlab-runner hpe-apollo

Host - gitlab-runner ibm-p8

Host - gitlab-runner intel-canoepass

Host - gitlab-runner rock-zvm

Hast - gitlab-runner xci30

Hast - gitlab.com - website

Host - reporter-ng

Program - AWS costs: component

Program - AWS costs: daily

Program - AWS costs: service

Program - AWS costs: usage_type

Program - Beaker queues - aarché4

Program - Beaker queues - ppc6dle

Program - Beaker queues - s390x

Program - Beaker queues - s390x_z13

Program - Beaker queues - x86_64

Program - Beaker system - gatto-1.tpb.lab.eng.brg.redhat.com
Program - Beaker system - gatto-2.tpb.lab.eng.brg.redhat.com
Program - Beaker system - kernelci-1.5390.bos.redhat.com
Program - Beaker system - kernelci-2.5390.bos.redhat.com
Program - Beaker system - kernelci-3.5390.bos.redhat.com
Program - Beaker system - kernelci-4.5390.bos.redhat.com
Program - Beaker system - kernelci-5.5390.bos.redhat.com
Program - Beaker system - kernelci-6.5390.bos.redhat.com
Program - Beaker system - rdma-dev-19.lab.bos.redhat.com
Program - Beaker system - rdma-dev-20.lab.bos.redhat.com
Program - Beaker system - rdma-perf-02.lab.bos.redhat.com
I 2l crf02 1o dba

* but it works on their compute

RedHat

Keeping track of many, many pieces

Monitoring: InfluxDB

Where we were

» Custom solutions per application
Different data and intervals
Not generic, simple or safe

» Scrappers to filter logs and convert them into data points
Simpler than adapting sensible apps to push

» Telegraf as a PIM to bridge Prometheus to InfluxDB

Prometheus is turning into the standard

n

12

Keeping track of many, many pieces

Monitoring: Prometheus

Where we're going

» Expose services internal status
Monitor what a service is doing and how long it’s taking
» Prometheus as an import-and-forget solution

Python's prometheus-client

Built in on many services
» Telegraf sidecar for pods stats

» Kubernetes autodiscover and lay back

https://github.com/prometheus/client_python

88 Datawarehouse - pServices # <

il) = @ Last6hours ~ | @ || &

im v

~ Triager
Message Processing Time Production Queues Pods Count
11 min | 15K
32s —
2s — —_—— — : e T e 10K
a0 ms | - | 1
s | | _[—. | o0
T) S —— o il I - — ! SHE SR —— b \
10us | | =i, R e | — o
08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00 14:00 T Tier Gt T A e
~ KCIDB Forwarder
Message Processing Time Production Queues Pods Count
100 ms 10
05
o
-05
-1.0
08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 i e i Yo S e
~ KCIDB Submitter
Message Processing Time Production Queues Pods Count
e | \ | | | | | | | | ’
| ¥ \ | | | | | \ | \ il [l
s . ~ q}i T T T 5 T T T e & Ur v
ﬁ a i E‘ By Py : == 4
e .H | L] = lﬁ-,Il || L"I- IIIIJ _l .| 1
2
200ps — t= — u nmy | ol L oo — J u
10 s o 0
08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 G A T T e i
Mt 1ol

\., Red Hat

14

Keeping track of many, many pieces

Sentry

How to be the first one to know when everything blows up

» Track errorsinreal time

» Internal: sentry.engineering.redhat.com

Community maintained
Works great

» External: sentry.io
Thanks packit!

https://sentry.engineering.redhat.com/
https://sentry.io/

Keeping track of many, many pieces

How to find out what's wrong?
IRC + Grafana FTW

IRC Alerts

» Someone is gonna read that

Grafana

» Easy to hack dashboards

Plus there are a ton of templates online !

» Allows combining different data sources

» Quick alerting and templating

https://grafana.com/grafana/dashboards

Prevention

Embrace the problems

Queue all the stuff

Avoid losing data

» Message Queues are great for communicating pieces
Reliable and distributed
Allows to reject a message safely
» Webhooks are unreliable
Convert them to messages! !
» Schedule and retry messages without reinventing the wheel
» Test staging with production data
» AWS-hosted AMQP cluster becomes SPOF

1_Webhook receiver https:/aitlab.com/cki-project/cki-tools/-/tree/main/cki/cki_tools/webhook receiver

https://gitlab.com/cki-project/cki-tools/-/tree/main/cki/cki_tools/webhook_receiver

Embrace the problems

Webhooks to AMQP

a.k.a. WebHook Receiver

» Plugin any webhook and distribute it reliably

Anywhere
oo +
internal & +->+ Consumer_1 |
gitlab.com AWS Lambda AWS EC2 | +--—------- +
+ - + A + - + | - +
| GitLab +--->+ webhook receiver +--->+ RabbitMQ +--+->+ Consumer 2 |
+ - + A + - + | - +
| 4= +
+->+4 Consumer_n |
oo +

1_ Resilient Messaging Queues https://cki-project.org/docs/hacking/operations/messaging/#use-case-gitlab-webhooks

https://cki-project.org/docs/hacking/operations/messaging/#use-case-gitlab-webhooks

Embrace the problems

Minimize the essentials

Less critical pieces means less critical failures

» Essential components
* Needed for the service to run
» Necessary components
* Have to work at least sometimes
» Optional components
- Only provide observability and increase reliability

» Everything wrapped up into container images to freeze time...

https:/documentation.internal.cki-project.org/deployment/unreliable-infrastructure,

https://documentation.internal.cki-project.org/deployment/unreliable-infrastructure/

20

Recovery

21

Retry Driven Recovery

Rescheduling Messages with RabbitMQ

What goes around comes around

» Endlessly circulate messages until successfully handled

» Use DLX+ TTL to requeue messages after some time''

x-dead-letter-exchange = e.retry.in
x-dead-letter-routing-key = {name}

| e.prod.{name} +--->+ qg.prod.{name} +------------- >4 consumer

| | routing-key = {name}
v |

x-dead-letter-exchange = e.retry.out
x-message-ttl = n seconds

1_Resilient Messaging Queues https://cki-project.org/docs/hacking/operations/messaging/

https://cki-project.org/docs/hacking/operations/messaging/

22

Retry Driven Recovery

Insist until it works

“Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.” - Samuel Beckett

» Retry every network access multiple times

looping helper for shell code

common Python code to setup a retrying session
» Pipeline Herder:

Keeps track of failed GitLab jobs

Detects common transient errors

Retries jobs with increasing interval of time

23

Retry Driven Recovery

v v v Y

Fallbacks

When retries are not enough for PS|

Gitlab Runner's containerized jobs can run anywhere
Runners set up on OSP, Beaker, different OCP clusters
AWS-based production runners soon TBD™

Fallbacks for multi-arch runners are hard to come by

RH IRC: #kernelci

https://cki-project.org/
https://gitlab.com/cki-project

	How the CKI team keeps its service running
	Problem statement
	Slide 3
	Slide 4
	General idea: reliable service on unreliable infrastructure
	Detection
	Detection
	Logs collection
	High level monitoring
	Slide 10
	Monitoring: InfluxDB
	Monitoring: Prometheus
	Slide 13
	Sentry
	How to find out what’s wrong?
	Prevention
	Queue all the stuff
	Webhooks to AMQP
	Minimize the essentials
	Recovery
	Rescheduling Messages with RabbitMQ
	Insist until it works
	Fallbacks
	🎉

