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Introduction

Problem statement
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Avoiding grumpy kernel developers

▸ For each commit under test, run a build+test pipeline to completion
▸ Ideally that means:
･ detecting a commit
･ triggering a pipeline
･ reporting results

▸ How hard can it be...



3

https://www.pexels.com/photo/grey-kitten-on-silver-paper-bag-141496/

Name or Service not known
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Introduction

General idea: reliable service on unreliable infrastructure
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Murphy and It's Always DNS

▸ Lemmas:
･ Any component/dependency that can fail will fail
･ Some will fail more than others
･ Nearly all failures can be retried successfully
･ But we also have to detect the other ones

▸ So failures need to be…
･ Detected: logging, monitoring, alerting
･ Prevented: redundancy, fewer dependencies
･ Recovered: retries at all levels, fallbacks



Detection
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Detection
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Keeping track of many, many pieces

▸ Lots of moving pieces
･   ⏳ Long standing pods
･   ⏱️ Cron jobs
･   ⛈️ Different clouds, different clusters
･   ↕️ Services scaling up/down

▸ Data in different formats
･   📜 Logs
･   📊 Data points
･ 🔥  Errors



Keeping track of many, many pieces

Logs collection
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> /dev/null

▸ Standardized logger names and levels
･ Easier to read and configure

▸ Putting all the logs on a common place
･ Shared NFS between OCP pods
･ Human friendly, easily grepable

▸ Grafana Loki stack for processing
･ ‘Like Prometheus, but for logs!’
･ Indexed and easy retention policies



Keeping track of many, many pieces

High level monitoring
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Just assume no one monitors their services

▸ Keep track of 3rd party resources that we depend on

▸ Monit as a simple solution for monitoring

･ Hosts uptime
･ NFS file systems uptime and size
･ Beaker hosts queues
･ S3 bucket sizes
･ RabbitMQ messages and queues

▸ Store instant statuses and record downtimes

https://mmonit.com/monit/


* but it works on their computer



Keeping track of many, many pieces

Monitoring: InfluxDB
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Where we were

▸ Custom solutions per application
･ Different data and intervals
･ Not generic, simple or safe

▸ Scrappers to filter logs and convert them into data points
･ Simpler than adapting sensible apps to push

▸ Telegraf as a PIM to bridge Prometheus to InfluxDB
･ Prometheus is turning into the standard



Keeping track of many, many pieces

Monitoring: Prometheus
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Where we’re going

▸ Expose services internal status
･ Monitor what a service is doing and how long it’s taking

▸ Prometheus as an import-and-forget solution

･ Python’s prometheus-client

･ Built in on many services
▸ Telegraf sidecar for pods stats
▸ Kubernetes autodiscover and lay back

https://github.com/prometheus/client_python




Keeping track of many, many pieces

Sentry
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How to be the first one to know when everything blows up

▸ Track errors in real time

▸ Internal: sentry.engineering.redhat.com

･ Community maintained
･ Works great

▸ External: sentry.io

･ Thanks packit!

https://sentry.engineering.redhat.com/
https://sentry.io/


Keeping track of many, many pieces

How to find out what’s wrong?
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IRC + Grafana FTW

 📨 IRC Alerts

▸ Someone is gonna read that

 📈 Grafana

▸ Easy to hack dashboards

･ Plus there are a ton of templates online !

▸ Allows combining different data sources
▸ Quick alerting and templating

https://grafana.com/grafana/dashboards
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Prevention



Embrace the problems

Queue all the stuff
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Avoid losing data

1_ Webhook receiver https://gitlab.com/cki-project/cki-tools/-/tree/main/cki/cki_tools/webhook_receiver

▸ Message Queues are great for communicating pieces
･ Reliable and distributed
･ Allows to reject a message safely

▸ Webhooks are unreliable
･ Convert them to messages!  1 

▸ Schedule and retry messages without reinventing the wheel
▸ Test staging with production data
▸ AWS-hosted AMQP cluster becomes SPOF

https://gitlab.com/cki-project/cki-tools/-/tree/main/cki/cki_tools/webhook_receiver


Embrace the problems

Webhooks to AMQP
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a.k.a. WebHook Receiver

1_ Resilient Messaging Queues https://cki-project.org/docs/hacking/operations/messaging/#use-case-gitlab-webhooks

▸ Plug in any webhook and distribute it reliably

                                                        Anywhere
                                                       +------------+
internal &                                          +->+ Consumer_1 |
gitlab.com         AWS Lambda           AWS EC2     |  +------------+
+--------+    +------------------+    +----------+  |  +------------+
| GitLab +--->+ webhook receiver +--->+ RabbitMQ +--+->+ Consumer_2 |
+--------+    +------------------+    +----------+  |  +------------+
                                                    .  .            .
                                                    .  .            .
                                                    |  +------------+
                                                    +->+ Consumer_n |
                                                       +------------+

https://cki-project.org/docs/hacking/operations/messaging/#use-case-gitlab-webhooks


Embrace the problems

Minimize the essentials
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Less critical pieces means less critical failures

https://documentation.internal.cki-project.org/deployment/unreliable-infrastructure/

▸ Essential components
･ Needed for the service to run

▸ Necessary components
･ Have to work at least sometimes

▸ Optional components
･ Only provide observability and increase reliability

▸ Everything wrapped up into container images to freeze time...

https://documentation.internal.cki-project.org/deployment/unreliable-infrastructure/
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Recovery



Retry Driven Recovery

Rescheduling Messages with RabbitMQ
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What goes around comes around

1_ Resilient Messaging Queues https://cki-project.org/docs/hacking/operations/messaging/

▸ Endlessly circulate messages until successfully handled 
▸ Use DLX + TTL to requeue messages after some time 1

                    x-dead-letter-exchange = e.retry.in
                     x-dead-letter-routing-key = {name}
+---------------+    +---------------+              +----------+
| e.prod.{name} +--->+ q.prod.{name} +------------->+ consumer |
+---------------+    +--+--------+---+              +----------+
                        |        ^
      +-----------------+        +--------------+
      |                                         | routing-key = {name}
      v                                         |
+-----+------+    +----------------+    +-------+-----+
| e.retry.in +--->+ q.retry.{name} +--->+ e.retry.out |
+------------+    +----------------+    +-------------+
                  x-dead-letter-exchange = e.retry.out
                  x-message-ttl = n seconds

https://cki-project.org/docs/hacking/operations/messaging/


Retry Driven Recovery

Insist until it works
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“Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.” - Samuel Beckett

▸ Retry every network access multiple times
･ looping helper for shell code
･ common Python code to setup a retrying session

▸ Pipeline Herder:
･ Keeps track of failed GitLab jobs
･ Detects common transient errors
･ Retries jobs with increasing interval of time



Retry Driven Recovery

Fallbacks
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When retries are not enough for PSI

▸ Gitlab Runner's containerized jobs can run anywhere
▸ Runners set up on OSP, Beaker, different OCP clusters
▸ AWS-based production runners soon TBD™
▸ Fallbacks for multi-arch runners are hard to come by 



🎉
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  💬 RH IRC: #kernelci

  📄 https://cki-project.org

  💾 https://gitlab.com/cki-project

https://cki-project.org/
https://gitlab.com/cki-project
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