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team background
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▸ CKI: Continuous Kernel Integration - CI as a service
▸ prevent bugs from being merged into kernel trees
▸ managing the CI infrastructure for Red Hat's kernel development
▸ in a nutshell:

･ GitLab pipeline per kernel revision, testing in Beaker
･ platforms: OpenShift, OpenStack, Beaker, AWS EC2
･ RabbitMQ AMQP messaging cluster hosted on AWS

▸ home page and documentation: https://cki-project.org
▸ code: https://gitlab.com/cki-project

･ one GitLab CI pipeline and ~ 70 microservices/cron jobs
･ ~20 changes/day merged and automatically deployed to production

https://cki-project.org
https://gitlab.com/cki-project
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introduction

▸ incident: unexpected event that disrupts business operational 

processes or reduces the quality of a service (The Internet)

▸ management: how to mitigate and resolve incidents, and prevent 

them from happening again

▸ small service teams: Two Pizza Rule -> between six and ten people

In the following:

▸ incident detection

▸ incident management
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incident detection



finding out before your customers



detection: monitoring and alerting setup
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▸ the early an incident is detected, the more time there is to fix it

▸ detecting issues in build/test pipelines, u-services, cron jobs, FaaS, …

▸ components:

･ logging (Loki)

･ metrics (Prometheus)

･ visualization (Grafana)

･ exceptions (Sentry)

･ alerting (Alertmanager)

▸ simplify onboarding of services to these as much as possible



▸ Loki log aggregation system:

･ set of labels for each log stream, no indexing of log contents

･ ingestion via promtail which pushes to Loki

▸ log sources:

･ pods: log files + tee stdout to a file, ingest via promtail sidecar

･ cronjobs: tee directly into promtail stdin

･ journald: scrape via promtail

･ AWS CloudWatch, …

▸ allows log-based alerting

▸ apply everywhere: Kubernetes YAML templating

logging - Loki
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https://grafana.com/oss/loki/
https://grafana.com/docs/loki/latest/clients/promtail/


metrics - Prometheus
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▸ Prometheus monitoring system:

･ named time series with a set of labels

･ pulls from metrics HTTP endpoints

▸ data types:

･ counters: can only go up, gauges: can also go down

･ histograms/summaries: estimate distributions

▸ Python support via prometheus-client

･ extra thread with metrics HTTP endpoint

▸ Kubernetes autodiscover to scrape metrics from all running pods

▸ aggregate across namespaces/clusters via federation

https://prometheus.io/
https://github.com/prometheus/client_python


example metric

9

▸ Python code:

▸  $ curl service:8765/metrics:

# HELP cki_message_received_created Number of queue messages received
# TYPE cki_message_received_created gauge
cki_message_received_created 1.687063249592228e+09

import prometheus_client

METRIC_MESSAGE_RECEIVED = prometheus_client.Counter(
   'cki_message_received', 'Number of queue messages received')

def received_callback(function, *args, **kwargs):
   METRIC_MESSAGE_RECEIVED.inc()

prometheus_client.start_http_server(8765)
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exceptions - Sentry
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▸ collect exceptions via Sentry:

･ know about weird issues before your users

･ track errors in real time

･ allows to fix the long tail of unlikely errors

▸ Python support via sentry-sdk

･ hooks into exception handler, error logging

･ SENTRY_DSN env variable with server + secret

▸ shows source context, variables, exceptions, SQL, HTTP info, …

･ custom contexts to include more information

https://sentry.io
https://sentry.io/for/python/
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alerting - Alertmanager
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▸ surface alerts via Alertmanager:

･ group and route alerts to an alerting destination

･ alerts can also be inhibited and silenced

▸ Loki/Prometheus define alerts based on logs/metrics

▸ destinations: email, Slack, text messages, HTTP endpoints, …

▸ configurable templates, timing for grouped messages

https://prometheus.io/docs/alerting/latest/alertmanager/
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incident management



just fix it you said?



incident handling process
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▸ incident handling has both technical and social challenges

▸ technical:

･ mitigate, fix immediate issues

･ fix root cause

▸ social:

･ who does what when, if at all

▸ small service teams:

･ no dedicated site reliability engineers (SREs)

･ incident handling is a team responsibility



historical approach - just fix it
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▸ hand it to the most knowledgeable person in the (chat) room

▸ advantages:

･ very short time to recovery (unless that person is on PTO)

▸ disadvantages:

･ bus factor of ~one

･ no knowledge transfer

･ burnout risk

･ move fast and (hopefully not) break things



currently in use - structured approach
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▸ structured incident handling approach

･ https://cki-project.org/docs/contributing/incidents/

▸ first thing: create a public incident ticket (I know 😱)

･ collect information, screen shots, links

･ use confidential comments for internal information

▸ proceed in phases

https://cki-project.org/docs/contributing/incidents/


closed

everything is better in layersphases
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active mitigated resolved

reduce the impact on the 
production environment

resolve the direct cause 
of the incident

improve on the root 
cause of the incident



closed

example: spot instances fail to launch
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active mitigated resolved

increase spot price limit 
directly on gitlab-runner VMs

increase spot price limit 
properly in GitOps

remove spot price limit default 
so it is not necessary to set 

spot price limit at all

▸ spot instance price limits for docker-machine were set too low

▸ spot price increase resulted in UnfulfillableCapacity error

▸ docker-machine default is set to USD 0.50

https://gitlab.com/cki-project/infrastructure/-/issues/222


closed

example: updated SSL certificates are broken
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active mitigated resolved

▸ renewal of SSL certificates for somesite.host.org went wrong

･ before, public CA was used; for renewal, internal CA was used

･ broke all customers without the internal CA cert in their bundle

･ customers complained on the mailing list

ask your audience!



closed

example: updated SSL certificates are broken
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active mitigated resolved

restore previous SSL 
certificate

re-request SSL certificate 
from public CA

add monitoring for correct CA
automate certificate renewal

▸ renewal of SSL certificates for somesite.host.org went wrong

･ before, public CA was used; for renewal, internal CA was used

･ broke all customers without the internal CA cert in their bundle

･ customers complained on the mailing list



social dynamics and summary
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▸ dealing with social dynamics:

･ no phase is allowed to be skipped

･ later phases are not less important

･ different phases can be handled by different people

･ use a Kanban board to track progress

･ weekly review meeting

▸ surprisingly this actually more-or-less works
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🤗 Question time 🤗


