
Michael Hofmann

Incident management
for small service teams

team background

2

▸ CKI: Continuous Kernel Integration - CI as a service
▸ prevent bugs from being merged into kernel trees
▸ managing the CI infrastructure for Red Hat's kernel development
▸ in a nutshell:

･ GitLab pipeline per kernel revision, testing in Beaker
･ platforms: OpenShift, OpenStack, Beaker, AWS EC2
･ RabbitMQ AMQP messaging cluster hosted on AWS

▸ home page and documentation: https://cki-project.org
▸ code: https://gitlab.com/cki-project

･ one GitLab CI pipeline and ~ 70 microservices/cron jobs
･ ~20 changes/day merged and automatically deployed to production

https://cki-project.org
https://gitlab.com/cki-project

3

introduction

▸ incident: unexpected event that disrupts business operational

processes or reduces the quality of a service (The Internet)

▸ management: how to mitigate and resolve incidents, and prevent

them from happening again

▸ small service teams: Two Pizza Rule -> between six and ten people

In the following:

▸ incident detection

▸ incident management

4

incident detection

finding out before your customers

detection: monitoring and alerting setup

6

▸ the early an incident is detected, the more time there is to fix it

▸ detecting issues in build/test pipelines, u-services, cron jobs, FaaS, …

▸ components:

･ logging (Loki)

･ metrics (Prometheus)

･ visualization (Grafana)

･ exceptions (Sentry)

･ alerting (Alertmanager)

▸ simplify onboarding of services to these as much as possible

▸ Loki log aggregation system:

･ set of labels for each log stream, no indexing of log contents

･ ingestion via promtail which pushes to Loki

▸ log sources:

･ pods: log files + tee stdout to a file, ingest via promtail sidecar

･ cronjobs: tee directly into promtail stdin

･ journald: scrape via promtail

･ AWS CloudWatch, …

▸ allows log-based alerting

▸ apply everywhere: Kubernetes YAML templating

logging - Loki

7

https://grafana.com/oss/loki/
https://grafana.com/docs/loki/latest/clients/promtail/

metrics - Prometheus

8

▸ Prometheus monitoring system:

･ named time series with a set of labels

･ pulls from metrics HTTP endpoints

▸ data types:

･ counters: can only go up, gauges: can also go down

･ histograms/summaries: estimate distributions

▸ Python support via prometheus-client

･ extra thread with metrics HTTP endpoint

▸ Kubernetes autodiscover to scrape metrics from all running pods

▸ aggregate across namespaces/clusters via federation

https://prometheus.io/
https://github.com/prometheus/client_python

example metric

9

▸ Python code:

▸ $ curl service:8765/metrics:

HELP cki_message_received_created Number of queue messages received
TYPE cki_message_received_created gauge
cki_message_received_created 1.687063249592228e+09

import prometheus_client

METRIC_MESSAGE_RECEIVED = prometheus_client.Counter(
 'cki_message_received', 'Number of queue messages received')

def received_callback(function, *args, **kwargs):
 METRIC_MESSAGE_RECEIVED.inc()

prometheus_client.start_http_server(8765)

10

exceptions - Sentry

11

▸ collect exceptions via Sentry:

･ know about weird issues before your users

･ track errors in real time

･ allows to fix the long tail of unlikely errors

▸ Python support via sentry-sdk

･ hooks into exception handler, error logging

･ SENTRY_DSN env variable with server + secret

▸ shows source context, variables, exceptions, SQL, HTTP info, …

･ custom contexts to include more information

https://sentry.io
https://sentry.io/for/python/

12

alerting - Alertmanager

13

▸ surface alerts via Alertmanager:

･ group and route alerts to an alerting destination

･ alerts can also be inhibited and silenced

▸ Loki/Prometheus define alerts based on logs/metrics

▸ destinations: email, Slack, text messages, HTTP endpoints, …

▸ configurable templates, timing for grouped messages

https://prometheus.io/docs/alerting/latest/alertmanager/

14

15

incident management

just fix it you said?

incident handling process

17

▸ incident handling has both technical and social challenges

▸ technical:

･ mitigate, fix immediate issues

･ fix root cause

▸ social:

･ who does what when, if at all

▸ small service teams:

･ no dedicated site reliability engineers (SREs)

･ incident handling is a team responsibility

historical approach - just fix it

18

▸ hand it to the most knowledgeable person in the (chat) room

▸ advantages:

･ very short time to recovery (unless that person is on PTO)

▸ disadvantages:

･ bus factor of ~one

･ no knowledge transfer

･ burnout risk

･ move fast and (hopefully not) break things

currently in use - structured approach

19

▸ structured incident handling approach

･ https://cki-project.org/docs/contributing/incidents/

▸ first thing: create a public incident ticket (I know 😱)

･ collect information, screen shots, links

･ use confidential comments for internal information

▸ proceed in phases

https://cki-project.org/docs/contributing/incidents/

closed

everything is better in layersphases

20

active mitigated resolved

reduce the impact on the
production environment

resolve the direct cause
of the incident

improve on the root
cause of the incident

closed

example: spot instances fail to launch

21

active mitigated resolved

increase spot price limit
directly on gitlab-runner VMs

increase spot price limit
properly in GitOps

remove spot price limit default
so it is not necessary to set

spot price limit at all

▸ spot instance price limits for docker-machine were set too low

▸ spot price increase resulted in UnfulfillableCapacity error

▸ docker-machine default is set to USD 0.50

https://gitlab.com/cki-project/infrastructure/-/issues/222

closed

example: updated SSL certificates are broken

22

active mitigated resolved

▸ renewal of SSL certificates for somesite.host.org went wrong

･ before, public CA was used; for renewal, internal CA was used

･ broke all customers without the internal CA cert in their bundle

･ customers complained on the mailing list

ask your audience!

closed

example: updated SSL certificates are broken

23

active mitigated resolved

restore previous SSL
certificate

re-request SSL certificate
from public CA

add monitoring for correct CA
automate certificate renewal

▸ renewal of SSL certificates for somesite.host.org went wrong

･ before, public CA was used; for renewal, internal CA was used

･ broke all customers without the internal CA cert in their bundle

･ customers complained on the mailing list

social dynamics and summary

24

▸ dealing with social dynamics:

･ no phase is allowed to be skipped

･ later phases are not less important

･ different phases can be handled by different people

･ use a Kanban board to track progress

･ weekly review meeting

▸ surprisingly this actually more-or-less works

25

26

🤗 Question time 🤗

