
OSCI version

Michael Hofmann Iñaki Malerba

(retired from CKI)

reflections on
CKI architecture

introduction

team background

2

▸ CKI: Continuous Kernel Integration - CI as a service
▸ prevent bugs from being merged into kernel trees
▸ managing the CI infrastructure for Red Hat's kernel development
▸ in a nutshell:

･ GitLab pipeline per kernel revision, testing in Beaker
･ platforms: OpenShift, OpenStack, Beaker, AWS EC2
･ RabbitMQ AMQP messaging cluster hosted on AWS

▸ home page and documentation: https://cki-project.org
▸ code: https://gitlab.com/cki-project

･ one GitLab CI pipeline and ~ 70 microservices/cron jobs
･ ~20 changes/day merged and automatically deployed to production

https://cki-project.org
https://gitlab.com/cki-project

prelude

3

introduction

4

actually, what is CKI?

▸ home page: "finding kernel bugs before they hit your distribution"

▸ what we thought:

･ develop Python code to build and test kernel patches

･ what is important for development: DevOps!11!!

▸ what we actually do:

･ run Kernel Testing as a Service

･ what is important for running a service: ???

(later we found out it it is called SRE 🤦)

introduction

early experiences

5

▸ there was only one person to fix a bug ("domain expertise")

▸ no one knew what was deployed where ("development-focused")

▸ unclear internal dependencies ("machine under some desk")

▸ brittle external dependencies ("cluster is down")

▸ silent failures ("certificates expired")

▸ manual recovery ("tech lead is clicking buttons to restart jobs")

introduction

early conclusions

6

▸ team-maintenance (but differently structured code everywhere)

▸ GitOps for deployment (but how)

▸ document/manage dependencies (but how to find all of them)

▸ reduce (influence of) external dependencies (but what to keep)

▸ monitor failures (but how to find and surface them)

▸ automated recovery (but what does that even mean)

introduction

so what should CKI be

7

▸ common repo setup and code structure

▸ automated central service deployment

▸ managed infrastructure, no manual intervention allowed

▸ strategic thinking about required external services

▸ monitoring and alerting setup

▸ automated recovery at all layers

our product owner (PO) mentioned that we were also supposed to have

▸ a Gitlab CI pipeline with Beaker testing for kernel development 🤦

right, back to CKI architecture

introduction

8

introduction

PO says 1/3: Gitlab CI pipeline

9

introduction

PO says 2/3: result storage, analysis and known issue detection

10

introduction

PO says 3/3: reporting and gating

11

introduction

what your PO forgot to tell you

13

we found out that users are only happy if these are taken care of as well:

▸ continuous integration (CI):

･ common repo setup, code structure and testing

▸ continuous delivery/deployment (CD):

･ automated central service deployment

･ managed infrastructure, no manual intervention allowed

▸ site reliability engineering (SRE):

･ monitoring and alerting setup

･ strategic thinking about required external services

･ automated recovery at all layers

(and this is what the following slides are about)

14

continuous integration

continuous integration

▸ container images for delivery

･ tag images with :p-1234, :mr-1234, :latest

▸ share across projects:

･ job templates: building, tagging, testing, deployment, …

･ Containerfile snippets: entrypoint, Python service, cleanup, …

･ CI pipeline and container image builder images

･ common Python library: logging, Sentry, Prometheus metrics, …

･ linting/tox helper: pylint, trigger dependent project pipelines, …

･ coverage check: fail on regression, GitLab UI visualization

▸ GitLab project configuration as code: approval rules, …

standardized CI setup

15

16

continuous integration

▸ Containerfiles preprocessed by cpp
･ comments with /* foo */ instead of # bar

▸ Encapsulate common steps:
･ setup and cleanup

･ Python application, …

▸ Example Containerfile for a Python application:

Containerfile fragments

17

continuous integration

common library

▸ Consolidated code as a highway to unification
･ CKI_DEPLOYMENT_ENVIRONMENT

･ logger configuration for sane debugging

･ Prometheus metrics, message queues

･ https://gitlab.com/cki-project/cki-lib

https://gitlab.com/cki-project/cki-lib

continuous integration

18

code coverage

▸ Specify coverage regex to parse job output
▸ Export raw coverage data for visualization:

19

continuous delivery/deployment

▸ one deployment repository to rule them all

･ centralization of all infrastructure knowledge and processes

･ simple to support multiple Kubernetes clusters, environments

･ easy onboarding of yet another microservice

･ common parts heavily templated

▸ merge to main redeploys everything: ~200 jobs

･ keeps everybody honest

･ jobs can also be run manually from deployment repository MRs

20

continuous delivery/deployment

automated central service deployment

21

continuous delivery/deployment

specific deployments

▸ source repo changes: redeploy one service

･ automatically on merge to main

･ manually from merge requests

▸ deployed via

･ tag image with :staging/:production

･ trigger limited deployment pipeline

▸ rollbacks:

･ GitLab environments have history

･ rollback/rollout buttons via old jobs

https://github.blog/2012-08-29-deploying-at-github/

22

continuous delivery/deployment

templating Kubernetes resources

▸ ~ansible-lite: custom Jinja2 template processor

▸ global variables from external YAML files/dictionaries

▸ Jinja2 macros/templates to do the heavy lifting

▸ why not Helm: know exactly what is deployed

･ really, there is nothing inherently ✨✨✨ about k8s

deployments

▸ DRY Kubernetes service specs

･ do what I mean

･ one central place to configure all deployments

▸ projects-vars.yml for common configuration

▸ Jinja2 templates/macros hide all the magic

･ sensible defaults, easily customizable

▸ variables/secrets (Hashicorp Vault) helper

･ available in Bash, Ansible, Python, Jinja2

▸ create/reference PVCs, proper storage class

▸ expose a service via a route/DNS

･ metrics collection, liveness probe

▸ custom service accounts

▸ init containers, cron jobs, config maps, …
23

continuous delivery/deployment

Kubernetes microservice example

micro-service/project-vars.yml.j2
secret:
 - SENTRY_DSN: $MICRO_SERVICE_SENTRY_DSN
deployment:
 image: quay.io/cki/micro-service:production
 variables:
 - RABBITMQ_HOST: {{ cki_variable('HOST') | tojson }}
 - RABBITMQ_USER: cki.consumer
 - RABBITMQ_PORT
 volumes:
 - {pvc: $PROJECT_NAME, mountPath: /data}
storage: 100Gi
services:
 - port: 8000
 route: {cki_project_subdomain: micro.internal}
 metrics: true
serviceaccount:
 - apiGroups: ['']
 resources: [services, endpoints, pods]
 verbs: [get, list, watch]

continuous delivery/deployment

managed infrastructure

24

▸ serverless > containers (Kubernetes) > disposable VMs > pet VMs

▸ AWS Lambda/EC2, OpenStack, Beaker, PSI/ROSA/MP+ K8s

▸ exclusively configured via Ansible/Jinja2 templating

▸ ~infosec-ready machines

･ automated updates/reboots once per week

･ Qualys monitoring hooked up to Grafana/alertmanager

25

site reliability engineering

site reliability engineering

detection: monitoring and alerting setup

26

▸ detecting issues in build/test pipelines, u-services, cron jobs, FaaS

▸ logging (Loki)

▸ monitoring (Prometheus)

▸ visualization (Grafana)

▸ exceptions (Sentry)

▸ alerting (Alertmanager)

site reliability engineering

Loki and Prometheus

27

▸ logging via Loki:

･ standardized Python logger names, levels

･ Loki for processing: ‘Like Prometheus, but for logs!’

･ log-based alerting

▸ expose metrics via Prometheus endpoints:

･ Expose internal status of services

･ Python’s prometheus-client: simple onboarding/deployment

･ K8s autodiscover: automatic monitoring of all services

site reliability engineering

Sentry and Alertmanager

29

▸ collect exceptions via Sentry:

･ know before your users and track errors in real time

･ allows to fix the long tail of unlikely errors

▸ surface alerts via Alertmanager:

･ mail, dedicated Slack channel

･ emergency alerts via text messages

site reliability engineering

reliable service with unreliable dependencies

30

▸ lemma: any dependency that can fail will fail

･ … some will fail more than others

▸ categories:

･ essential (needed for service to run): gitlab.com, AWS, Beaker

･ necessary (should work): microservices (K8s), result database

･ optional (nice to have): observability stack

▸ reduce dependencies and increase portability:

･ NFS/volumes/local storage/… -> move to S3

･ unreliable sources -> mirror on S3/quay.io

･ buildroot -> freeze via container images

site reliability engineering

automated recovery: HTTP

31

▸ Python:

･ common Python requests session setup

･ takes care of certificate setup and logging as well

▸ Curl:

･ configure for exitcode!=0 and retries

･ common curl configuration embedded in container images

▸ random shell code:

･ looping helper to do the right thing

･ keep set errexit enabled in shell functions

site reliability engineering

automated recovery: longer-lived dependency failures

32

▸ goal: retry nearly all failing Python code endlessly

▸ minimize REST API use and move to AMQP message queues

▸ automatically reject messages on exception

･ after cooldown, messages will be requeued again

･ can circulate until message successfully handled

▸ deals with a variety of issues:

･ external dependencies down -> waits until it is up again

･ edge case not considered -> waits until fixed code is deployed

site reliability engineering

automated/manual recovery: GitLab jobs

▸ pipeline herder microservice:

･ keeps track of failed GitLab jobs

･ detects common transient errors

･ retries jobs with increasing interval of time

▸ if GitLab CI runners fail:

･ containerized jobs can run ~anywhere

･ scripted provision helper for Beaker-based fallback runners

･ e.g. site-specific lab outages, mainframes offline, …

35

🤗 Question time 🤗

