Michael Hofmann [REIAE

"5)"1@" ﬁ

'f

c - ~

introduction

team background

CKI: Continuous Kernel Integration - Cl as a service

prevent bugs from being merged into kernel trees

managing the Cl infrastructure for Red Hat's kernel development

in a nutshell:
GitLab pipeline per kernel revision, testing in Beaker
platforms: OpenShift, OpenStack, Beaker, AWS EC2
RabbitMQ AMQP messaging cluster hosted on AWS

home page and documentation: https://cki-project.org

code: https://gitlab.com/cki-project

one GitLab Cl pipeline and ~ 70 microservices/cron jobs
~20 changes/day merged and automatically deployed to production

https://cki-project.org
https://gitlab.com/cki-project

prelude

introduction

actually, what is CKI?

» home page: "finding kernel bugs before they hit your distribution”

» what we thought:
develop Python code to build and test kernel patches
what is important for development: DevOps!1i!!
» what we actually do:
run Kernel Testing as a Service
what is important for running a service: ?77?
(later we found out ititis called SRE &)

introduction

early experiences

there was only one person to fix a bug ("domain expertise")

no one knew what was deployed where ("development-focused")
unclear internal dependencies ("machine under some desk")
brittle external dependencies ("cluster is down")

silent failures ("certificates expired")

manual recovery ("tech lead is clicking buttons to restart jobs")

introduction

early conclusions

team-maintenance (but differently structured code everywhere)
GitOps for deployment (but how)

document/manage dependencies (but how to find all of them)
reduce (influence of) external dependencies (but what to keep)
monitor failures (but how to find and surface them)

automated recovery (but what does that even mean)

introduction

>

so what should CKI be

common repo setup and code structure

automated central service deployment

managed infrastructure, no manual intervention allowed
strategic thinking about required external services
monitoring and alerting setup

automated recovery at all layers

our product owner (PO) mentioned that we were also supposed to have

>

a Gitlab Cl pipeline with Beaker testing for kernel development @)

introduction

right, back to CKI architecture

introduction

Merge
Requests

PO says 1/3: Gitlab Cl pipeline

!

Koji/Copr

!

Git
Repository

!

GitLab Pipeline

!

Pipeline
Herder

CKI CI Bot

Pipeline

!

<—>» Testing Lab

10

introduction

PO says 2/3: result storage, analysis and known issue detection

v

DW
Submitter

!

DataWarehouse

<—>» DW Triager

n

introduction

v

KCIDB
Forwarder

!

Upstream
KCIDB

PO says 3/3: reporting and gating

v

UMB
Messenger

v

!

OSCI
Gating

Reporter

!

Kemnel
Developers

Reporting

...

Merge
' Requests

-

Koji/Copr

!

Git
Repository

!

CKI CI Bot

!

Pipeline |

|
GitLab Pipeline <—>» Testing Lab

i | |

Pipeline
Herder

: 1

i Result processing |

Submitter

l

DataWarehouse

| |
<—>» DW Triager

5 KCIDB UMB

Forwarder Messenger Reporiar
Upstream 0SCI Kernel

' KCIDB Gating Developers

introduction

what your PO forgot to tell you

we found out that users are only happy if these are taken care of as well:

» continuous integration (CI):

common repo setup, code structure and testing
» continuous delivery/deployment (CD):

automated central service deployment

managed infrastructure, no manual intervention allowed
» site reliability engineering (SRE):

monitoring and alerting setup

strategic thinking about required external services

automated recovery at all layers

(and this is what the following slides are about)

14

continuous integration

continuous integration

standardized Cl setup

» container images for delivery
tag images with :p-1234, :mr-1234, :latest

» share across projects:
job templates: building, tagging, testing, deployment, ...
Containerfile snippets: entrypoint, Python service, cleanup, ...

Cl pipeline and container image builder images

common Python library: logging, Sentry, Prometheus metrics, ...

linting/tox helper: pylint, trigger dependent project pipelines, ...

coverage check: fail on regression, GitLab Ul visualization

» GitLab project configuration as code: approval rules, ...

continuous integration

Containerfile fragments

FROM registry.access.redhat.com/ubi8/ubi
RUN echo "install weak deps=false” >> /fetc/dnf/dnf.conf

/* Python stack */
RUN dnf install -y git-core python39 python39-devel \
python39-pip python39-setuptools python39-wheel

RUN mkdir -p /code

COPY . /code

WORKDIR /code

RUN python3 -m pip install -e . && dce pip install.sh
CMD ["dce entrypoint.sh"]

/* Update everything possible */
RUN dnf --skip-broken -y update

/* Remove build artifacts */
RUN dnf clean all & rm -rfv /root/.cache /var/cache /var/log

v

>

v

Containerfiles preprocessed by cpp
comments with /* foo */ instead of # bar

Encapsulate common steps:
setup and cleanup

Python application, ...

Example Containerfile for a Python application:

EXPOSE 56000/tcp
ENV DCE START FLASK="dce app l.greeting"

17

continuous integration

from cki 1ib import messagequeue
from cki lib import metrics

from dce common import logging
from dce common import misc

Vel = . — . Sy
WGCE LU

LOGGER = logging.get logger('dce.my-app')

if _ name__ == ' main ':

x

M 1

metrics.prometheus init()
ENV SENTRY DSN. DCE ENVIRONMEN

misc.init sentry()

ENV DCE ENVIRONMENT

if not misc.is production():

LOGGER.warning('Not running in production mode')

- - DARRTTMA | ~ & DNART =
H I\ [(

messagequeue.MessageQueue().consume(call

WIFIIE F

ba

common library

» Consolidated code as a highway to unification
CKI_DEPLOYMENT_ENVIRONMENT

logger configuration for sane debugging
Prometheus metrics, message queues

https://qitlab.com/cki-project/cki-lib

https://gitlab.com/cki-project/cki-lib

continuous integration

lint and test:
coverage: '/"TOTAL.*\s+(\d+\%)s/'
artifacts:
reports:
cobertura: coverage/coverage.xml

coverage run
coverage report -m
coverage xml -0 coverage/coverage.xml

code coverage

» Specify coverage regex to parse job output
» Export raw coverage data for visualization:

def goodbye(name: str) -> str:
""Output a customized farewell.
if os.environ.get('DCE FAREWELL') == 'no':
return f'<p>I cannot let you go, {name}!</p>
farewell = os.environ.get('DCE FAREWELL', 'goodbye®)
return f'<p>{farewell.capitalize()}, {name}'!</p>

continuous delivery/deployment

20

continuous delivery/deployment

>

>

automated central service deployment

one deployment repository to rule them all
centralization of all infrastructure knowledge and processes
simple to support multiple Kubernetes clusters, environments
easy onboarding of yet another microservice
common parts heavily templated

merge to main redeploys everything: ~200 jobs
keeps everybody honest

jobs can also be run manually from deployment repository MRs

21

continuous delivery/deployment

specific deployments

Can be manually deployed to production/dce-app-1 » Deploy | | View latest app K

Can be manually deployed to staging/dce-app-1 > Deploy | | View latest app (]

Deployed to testing/dce-app-1-mr-12 22 hours ago

production/dce-app-1

Commit

(%)
P
@D
=
[~

¥ refs/merge-.. o 3c44f95e
g BLUE, I SAY

i

(¥ success

¥ main o lelc469f
(@ success

¥ main < b992e429

|:| I
(<)
\

@ success

& Merge branch 'support-anonymo...

& Merge branch 'output-image-vers...

View app 3

Deployed

55 minutes ago > v
1 day ago > v
1 day ago > v

>

>

>

source repo changes: redeploy one service
automatically on merge to main

manually from merge requests

deployed via
tag image with :staging/:production
trigger limited deployment pipeline
rollbacks:
GitLab environments have history

rollback/rollout buttons via old jobs

& RedHat

https://github.blog/2012-08-29-deploying-at-github/

22

continuous delivery/deployment

templating Kubernetes resources

~ansible-lite: custom Jinja2 template processor
global variables from external YAML files/dictionaries
Jinja2 macros/templates to do the heavy lifting
why not Helm: know exactly what is deployed
really, there is nothing inherently about k8s
deployments
DRY Kubernetes service specs
do what | mean

one central place to configure all deployments

23

continuous delivery/deployment

Kubernetes microservice example

secret:
- SENTRY DSN: $MICRO_SERVICE_SENTRY_DSN
deployment:
image: quay.io/cki/micro-service:production
variables:
- RABBITMQ HOST: {{ cki variable('HOST') | tojson }}
- RABBITMQ USER: cki.consumer
- RABBITMQ PORT
volumes:
- {pvc: $PROJECT NAME, mountPath: /data}
storage: 100Gi
services:
- port: 8000
route: {cki project subdomain: micro.internal}
metrics: true

serviceaccount:
- apiGroups: ['']
resources: [services, endpoints, pods]
verbs: [get, list, watch]

projects-vars.yml for common configuration
Jinja2 templates/macros hide all the magic

sensible defaults, easily customizable
variables/secrets (Hashicorp Vault) helper

available in Bash, Ansible, Python, Jinja2
create/reference PVCs, proper storage class
expose a service via a route/DNS

metrics collection, liveness probe
custom service accounts

init containers, cron jobs, config maps, ...

‘ RedHat

24

continuous delivery/deployment

managed infrastructure

serverless > containers (Kubernetes) > disposable VMs > pet VMs
AWS Lambda/EC2, OpenStack, Beaker, PSI/ROSA/MP+ K8s
exclusively configured via Ansible/Jinja2 templating
~infosec-ready machines

automated updates/reboots once per week

Qualys monitoring hooked up to Grafana/alertmanager

25

site reliability engineering

26

site reliability engineering

detection: monitoring and alerting setup

detecting issues in build/test pipelines, u-services, cron jobs, FaaS
logging (Loki)

monitoring (Prometheus)

visualization (Grafana)

exceptions (Sentry)

alerting (Alertmanager)

site reliability engineering

Loki and Prometheus

» logging via Loki:
standardized Python logger names, levels
Loki for processing: ‘Like Prometheus, but for logs!’
log-based alerting
> expose metrics via Prometheus endpoints:
Expose internal status of services
Python's prometheus-client: simple onboarding/deployment

K8s autodiscover: automatic monitoring of all services

27

a & o

88 Datawarehouse / Micro Services % <&

v Triager
Message Processing Time

10s

100 ms

10ms ¢ = T T T t t t ==
1ms t : — T—

100 ps T T T T —

10 ps

08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

v KCIDB Forwarder

Message Processing Time

10 ms
1ms
100 ys

10 ps

08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

v KCIDB Submitter
Message Processing Time

10.7 min —- = = i

12:00

12:00

12:30

12:30

T

hi+ & 2 @ Last 6 hours

Production Queues

0.500

-0.50

-1

1L 08:00

13:30

10:00 12:00

Production Queues

0.500

-0.50

-1
08:00

13:00

13:30

10:00 12:00

Production Queues

= = 6

=5

32s
160s - - 7

R e e R

BOms F

Message Processing Time

v

.

11:30

Al RO BETERBREER 0 S

2 +

13:30

08:00 10:00 12:00

Production Queues

v il | 1

v

Q|| & [Tm:~

Pods Count

Pods Count

Pods Count

Pods Count

site reliability engineering

Sentry and Alertmanager

» collect exceptions via Sentry:
know before your users and track errors in real time
allows to fix the long tail of unlikely errors

» surface alerts via Alertmanager:
mail, dedicated Slack channel

emergency alerts via text messages

29

site reliability engineering

reliable service with unreliable dependencies

» lemma: any dependency that can fail will fail
.. some will fail more than others

» categories:
essential (needed for service to run): gitlab.com, AWS, Beaker
necessary (should work): microservices (K8s), result database
optional (nice to have): observability stack

» reduce dependencies and increase portability:
NFS/volumes/local storage/... -> move to S3
unreliable sources -> mirror on S3/quay.io

buildroot -> freeze via container images

30

site reliability engineering

automated recovery: HT TP

> Python:

common Python requests session setup

takes care of certificate setup and logging as well
> Curl:

configure for exitcode!=0 and retries

common curl configuration embedded in container images
» random shell code:

looping helper to do the right thing

keep set errexit enabled in shell functions

31

32

site reliability engineering

automated recovery: longer-lived dependency failures

» goal: retry nearly all failing Python code endlessly
> minimize REST APl use and move to AMQP message queues
» automatically reject messages on exception
after cooldown, messages will be requeued again
can circulate until message successfully handled
» deals with a variety of issues:
external dependencies down -> waits until it is up again

edge case not considered -> waits until fixed code is deployed

..

Producers External messaging infrastructure CKI messaging infrastructure CKI consumers |

| Gittab | | AWS |
[webhooks J g ST g <—r>[consumer 1 J :
5 L AWS E [;
[e J 1 : > Lambda —> : consumer 2 J |
: [SOy J ' " Lambda [) : ;
E .—r-» | RabbitMQ E
[srew SR | | —— cluster :
: 5 . uMB L . | |
E : UMB —)E virtual queue é——:> AMQP bridge > : '
[Bugzilla }—‘—-k ;
E [Koji]—» E |
Fedora : Fedora @ | :

: Messaging —) queue '—v—> AMQP bridge —>»

[Copr]—v—> : .

Production message flow Retry loop
s ™
producer
A J

v

cki.exchange.producer

v

cki.exchange.webhooks

v

-l o e e oo

A

cki.exchange.retry.outgoing

cki.queue.webhooks.queue cki.queue.retry.cki.webhooks.queue
x-dead-letter-exchange = cki.exchange.retry.outgoing
x-message-ttl = 10 minutes
x-dead-fetter-exchange = cki.exchange.retry.incoming ,') CKl'eXChange'retrancommg
x-dead-etter-routing-key = cki.queue.webhooks.queue !
- ¢ YR
consumer
- J :
L

site reliability engineering

automated/manual recovery: GitLab jobs

> pipeline herder microservice:
keeps track of failed GitLab jobs
detects common transient errors
retries jobs with increasing interval of time
» if GitLab Cl runners fail:
containerized jobs can run ~anywhere
scripted provision helper for Beaker-based fallback runners

e.g. site-specific lab outages, mainframes offline, ...

35

e . : .

