o

f'lc aelHofmann Bruno Gon rIW..

Israel Santana Aleman Tales Lelo da Apare 'K?rx

",a

.’.' - Ay T

>

>

>

introduction
the present

the future

Overview

introduction

introduction

about CKI

the "other" kernel QE team

» CKI: Continuous Kernel Integration

home page and documentation: https://cki-project.org

code:; https://qitlab.com/cki-project

internal Slack: #team-kernel-cki

mixed team of ~10 people: 4 QE, 4 Dev, 1 manager, 1tech lead
> mission:
what: prevent bugs from being merged into kernel trees

how: shift kernel testing as far left as possible

https://cki-project.org
https://gitlab.com/cki-project
https://redhat-internal.slack.com/archives/C04KPCFGDTN

introduction

mission and reality

> what we do:
provide Cl-as-a-service for src-git RH kernel devel workflow
test upstream git trees
host internal kernel-related infrastructure

> main "product": RH kernel development workflow GitLab Cl pipeline
provide a fast inner development loop via GitLab merge
requests (MRs)
build (AWS): ~300 hours/workday
test (Beaker): we don't want to know, but one of the biggest

users

introduction

>

>

>

the kernel is special

no obviously itis (really!)

"interesting" code flow

ARK CentOS

subsystem trees Rawhide RHEL
ELN y-stream

upstream subsystem trees and mainline
Always Ready Kernel (ARK) for Rawhide and RHEL+1 (ELN)
CentOS Stream and RHEL y-streams and z-streams
dozens of separate test projects/frameworks
nearly all of them live outside the kernel tree
testing on VMs is not good enough

introduction

reasons for test troubles

whose faultis it

» testing kernels on real hardware is annoyingly hard

» Blame Allocation Matrix for a test run:

SKIP DONE PASS
test not applicable no test result required code fulfilled requirements
—> schedule test —> run test —> evaluate result
MISS ERROR FAIL
test could not be run test could not be completed code failed requirements

responsibility: CKI responsibility: test maintainer responsibility: kernel developer

introduction

>

>

what to do with "real” test failures

anybody said "waiving"?

what to do depends on the reason behind the test failure
the MR or RPM is broken: block the change, and get it fixed
already present before: track it (Jira), fix asynchronously
while waiting for asynchronous fixes:
selective waiving of failing tests until issue is fixed
automated via deterministic "known issue detection”

regular expressions and log files

introduction

[shift] [kernel testing] [as far left as possible]

text and meaning

> shift:
add additional testing on the left
keep testing to the right to catch weird integration issues

» kernel testing:
which parts of QE test plans to run where on the left

> how far left is constrained by buy-in from two groups of people:
developer buy-in for caring about test results
QE buy-in for maintaining test code and checking test results
shifting to the left needs to happen step-wise

10

the present

n

the present

CKI testing: upstream

subsystem trees

» for subsystem/mainline git trees referenced in pipeline-data

» running tests indexed by test sets in kpet-db (sets)

» results available in Web GUI of DataWarehouse

» test summaries reported via email

https://gitlab.com/cki-project/pipeline-data/-/blob/main/baseline.yaml
https://gitlab.com/redhat/centos-stream/tests/kernel/kpet-db
https://datawarehouse.cki-project.org/

the present

CKI testing: Rawhide/ELN/Fedora

ARK

Rawhide
ELN

» Always Ready Kernel (ARK) for Rawhide and RHEL+1 (ELN)

closely tracks mainline, separate Fedora release branches

» src-git: Cl pipelines in kernel-ark MRs for Rawhide/ELN
stay ready for next Fedora release and major RHEL cycle
» dist-git: Fedora/Rawhide/ELN Koji builds tested for “kt1™ test set

no gating, but test summaries reported via email

12

https://gitlab.com/cki-project/kernel-ark

the present

RHEL.: three levels of testing

CentOS
RHEL

y-stream

» src-git: before a change is merged
inner feedback loop for kernel development workflow (KWF)
find issues caused by code changes in the MR
stable subset of QE-maintained kernel tests specific to code change
» dist-git: before a kernel RPM is tagged into integration compose
prevent breaking of the compose because of integration issues
> composes: regression testing of complete composes

find and track regressions and weird issues in Jira

14

the future

the future

harmonize CKI| and kernel QE workflows

» integration of QE pipelines into kernel development workflow
selectively trigger QE Jenkins pipelines in MRs
feed test results back into MRs, and allow to gate on them
> enable consistent automatic waiving
for both CKl and QE Jenkins pipelines
at the src-git, RPM and compose level

needs all test results and logs in DataWarehouse

the future

CKI test audit for shared Devel/QE understanding

» developer viewpoint:
run only tests specific to subsystem under change
only what developers would run locally on their machine
» QE viewpoint:
run all tests likely to catch issues
e.g. xfstests configured for cifs on all networking changes...
> management goals:
points of contact/approval for Devel/QE for each test case run

accountability for current state/changes of what to run when

17

the future

adopt Shared OS Testing Infrastructure

in a nutshell: all tests should run via Testing Farm
Koji/Brew RPM testing/gating via static tmt test plans in dist-git
testing of merge requests via dynamic tmt test plans
more ideas:
reverse dependency testing?

QE S3 artifact storage, ReportPortal, Polarion, ...

the future

>

>

Testing Farm: how to get there

make sure nobody notices the surgery on the low-level plumbing

currently:

Restraint
standalone
mode

Beaker/AWS
provisioning

Automatic Gating UMB
Waiving message

GitLab Cl job

stepwise migration to Testing Farm:
provision machines via Testing Farm using both Beaker + VMs
run restraint-based tests via equivalent tmt test plan

automatic waiving after results are available in OSCI dashboard

e . : .

the present

RHEL.: src-git testing

» current testing providers:
CKl
LNST (manual)
» current QE workflow support:
UMB triggers (but unused)
> missing QE workflow support:
known issue detection (KID)

feeding results into MRs

20

Src (_]It
src-git MR \‘

create/push |

CKI build/publish

1=~ CKI_BUIld_OK Y--==-====== ==

> CKIl team —» KID —
«| cki.ready for test N N ; l
”1 cki_finished=False QE team ' KID ;
-~ Cki_test Ok ------ oo
> cki.ready for_test R QE team > KID
; cki_finished=True
L. ready for;ga A-sres-srs s e s e R e e A e e v i i e e e
: ' ckiready for test : i
: ready_for_ga=True | i T

AAAAAAAAAAAAAAAAAAAAAAAAA

» QE preverification

ready_for_merge

Y

src-git MR merge

|

21

the present

RHEL.: dist-git testing

» current testing providers:
CKI (gating)
cloud boot (gating)
some QE (not gating)
» existing QE workflow support:
UMB triggers (by Brew/CKI)
» missing QE workflow support:
known issue detection

most QE testing is not gating

!

dist-git push

dist-git

Brew RPM build }4

cki_test ok

i-~~{ build_completed)]------~--====- remrrrrr e e e
> CKI team —» KID
«| Ccki.ready for_ test
| cki finished=False » QE team o Lk
o| cki.ready for_test > QE team > KID

"1 cki_finished=True

osci_gating_ok
A

y

Brew pending tag |

+++++++++ S e —

the present s e l R e s

composes

integration L

; compose |
RHEL: compose testng
| —» compose_fagged —> RTT team
I v e nightly compose promotion '
» current testing providers: 5 {”‘ghﬂﬁ,',?;i%’eam“
RTT qualification Ee sl S e oimn . i . oo s s i i o sy
QE teams —» weekly schedule —> QE team —> KID —){ nBe\ZN
» missing QE workflow support: | e —
known issue detection 5 r |
milestone
compose
; ehensi ; ,E ------ » New
cct)g;?i:\g c;]clle\zle QE team : K0 BZ

\ 4 candidate compose promotion
candidate
compose

22

